留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

带有轮缘密封的涡轮动叶轮毂端壁造型

何振鹏 周佳星 辛佳 杨成全 孙爱俊 黎柏春

何振鹏,周佳星,辛佳,等. 带有轮缘密封的涡轮动叶轮毂端壁造型[J]. 北京航空航天大学学报,2023,49(10):2596-2607 doi: 10.13700/j.bh.1001-5965.2021.0728
引用本文: 何振鹏,周佳星,辛佳,等. 带有轮缘密封的涡轮动叶轮毂端壁造型[J]. 北京航空航天大学学报,2023,49(10):2596-2607 doi: 10.13700/j.bh.1001-5965.2021.0728
HE Z P,ZHOU J X,XIN J,et al. Endwall profiling of turbine blade hub with rim seal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2596-2607 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0728
Citation: HE Z P,ZHOU J X,XIN J,et al. Endwall profiling of turbine blade hub with rim seal[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2596-2607 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0728

带有轮缘密封的涡轮动叶轮毂端壁造型

doi: 10.13700/j.bh.1001-5965.2021.0728
基金项目: 中央高校基本科研业务费专项资金(3122019075)
详细信息
    通讯作者:

    E-mail:saj_gadfly@sohu.com

  • 中图分类号: V231.3

Endwall profiling of turbine blade hub with rim seal

Funds: The Fundamental Research Funds for the Central Universities (3122019075)
More Information
  • 摘要:

    为通过主动端壁控制技术减弱轮缘密封流对主流通道的影响,基于轮毂端壁静压对高压涡轮动叶端壁非轴对称端壁造型,分析了转静间隙密封流与主流相互作用及端壁造型后损失减弱的效果。结果表明:非轴对称端壁造型后密封流对主流通道的堵塞减弱,主流质量流量增加,合理控制端壁造型幅值能够提升涡轮级工作效率;靠近动叶前缘向上凸起的端壁造型增加了轮缘密封腔出口位置的径向压力梯度,增大了燃气入侵与密封出流的强度;主动端壁控制技术降低了主流通道内的横向压力梯度和轮毂二次流结构径向位置,减弱了由密封流引起的二次流损失;密封流质量流量比为1.2%时,造型幅值为5%和8%模型二次流动能分别减少了1.18%和3.76%。

     

  • 图 1  本文模型示意图[20-21]

    Figure 1.  Schematic of the proposed model[20-21]

    图 2  带有密封腔的LISA1.5级涡轮计算网格划分

    Figure 2.  Computation mesh of LISA 1.5-stage turbine with rim seal cavity

    图 3  实验与数值模拟结果对比

    Figure 3.  Comparison of experimental results with calculated results

    图 4  轮毂静压分布

    Figure 4.  Static pressure distribution on hub

    图 5  轮毂端壁控制点划分

    Figure 5.  Distribution of asymmetric control points on endwall

    图 6  非轴对称端壁周向造型示意图

    Figure 6.  Schematic diagram of non-axisymmetric endwall circumscribed profile

    图 7  非轴对称端壁5%叶高幅值造型轮毂ΔR云图

    Figure 7.  ΔR contour of non-axisymmetric endwall Nonaxi EW5%

    图 8  非轴对称端壁5%叶高幅值造型三维示意图

    Figure 8.  Three-dimensional schematic diagram of non-axisymmetric endwall Nonaxi EW5%

    图 9  非轴对称端壁造型轮毂静压云图

    Figure 9.  Static pressure distribution contours of non-axisymmetric endwalls

    图 10  吸力面静压分布

    Figure 10.  Pressure on blade suction side

    图 11  涡轮设计参数径向分布

    Figure 11.  Spanwise distribution of turbine aerodynamic design parameters

    图 12  动叶出口二次流湍动能系数径向分布

    Figure 12.  Radial distribution of secondary kinetic energy coefficient

    图 13  轮缘密封出口径向速度云图

    Figure 13.  Radial velocity contours at rim seal cavity exit

    图 14  密封效率云图与流线图

    Figure 14.  Contours of sealing effectiveness and streamline

    图 15  动叶前缘三维旋涡结构示意图

    Figure 15.  Schematic diagram of three-dimensional vortex structure at leading edge of blade

    图 16  动叶通道内三维流线

    Figure 16.  3D streamline of rotor passage

    图 17  动叶出口轴向涡量云图

    Figure 17.  Axial vorticity contours at rotor exit

    表  1  第1级涡轮效率

    Table  1.   1-stage turbine efficiency

    计算模型效率/%质量流量/(kg·s−1
    original EW90.009211.4605
    baseline EW, MIR=0.8%89.687611.3727
    baseline EW, MIR=1.2%89.629411.3345
    baseline EW, MIR=1.6%89.580111.2893
    Nonaxi EW 5%, MIR=0.8%89.697311.4271
    Nonaxi EW 5%, MIR=1.2%89.655111.3955
    Nonaxi EW 5%, MIR=1.6%89.728811.3593
    Nonaxi EW 8%, MIR=0.8%89.240711.4333
    Nonaxi EW 8%, MIR=1.2%89.281611.3973
    Nonaxi EW 8%, MIR=1.6%89.415111.3612
    下载: 导出CSV
  • [1] SHARMA O P, BUTLER T L. Predictions of end wall losses and secondary flow in axial flow turbine cascades[J]. Journal of Turbomachinery, 1987, 109(2): 229-236. doi: 10.1115/1.3262089
    [2] ROSE M G. Non-axisymmetric end wall profiling in the HP NGVs of an axial flow gas turbine: ASME 1994-GT-249[R]. New York: ASME, 1994.
    [3] HARVEY N W, ROSE M G, TAYLOR M D, et al. Non-axisymmetric turbine endwall design. Part I: Three-dimensional linear design system: ASME 1999 -GT-338[R]. New York: ASME, 1999.
    [4] HARTLAND J, GREGORY-SMITH D. A design method for the profiling of endwalls in turbines: ASME 2002-GT-30433[R]. New York: ASME, 2002.
    [5] 李国君, 马晓永, 李军. 非轴对称端壁成型及其对叶栅损失影响的数值研究[J]. 西安交通大学学报, 2005, 39(11): 9-12. doi: 10.3321/j.issn:0253-987X.2005.11.002

    LI G J, MA X Y, LI J. Non-axisymmetric turbine end wall profiling and numerical investigation of its effect on the turbine cascade loss[J]. Journal of Xi’an Jiao Tong University, 2005, 39(11): 9-12(in Chinese). doi: 10.3321/j.issn:0253-987X.2005.11.002
    [6] 郑金, 李国君, 李军, 等. 一种新非轴对称端壁成型方法的数值研究[J]. 航空动力学报, 2007, 22(9): 1487-1491. doi: 10.3969/j.issn.1000-8055.2007.09.015

    ZHENG J, LI G J, LI J, et al. Numerical research on a new non-axisymmetric endwall profiling method[J]. Journal of Aerospace Power, 2007, 22(9): 1487-1491(in Chinese). doi: 10.3969/j.issn.1000-8055.2007.09.015
    [7] 那振喆. 非轴对称端壁造型技术在高压涡轮中应用的机理分析及试验研究[D]. 西安: 西北工业大学, 2017.

    NA Z Z. Aerodynamic mechanism analysis and experimental research of non-axisymmetric endwall in a high pressure turbine[D]. Xi’an: Northwestern Polytechnical University, 2017(in Chinese).
    [8] POPOVÍC I, HODSON H P. Improving turbine stage efficiency and sealing effectiveness through modifications of the rim seal geometry[J]. Journal of Turbomachinery, 2013, 135(6): 061016. doi: 10.1115/1.4024872
    [9] POPOVIĆ I, HODSON H P, JANKE E, et al. The effects of unsteadiness and compressibility on the interaction between hub leakage and mainstream flows in high-pressure turbines[J]. Journal of Turbomachinery, 2013, 135(6): 061015. doi: 10.1115/1.4024636
    [10] POPOVIĆ I, HODSON H P. The effects of a parametric variation of the rim seal geometry on the interaction between hub leakage and mainstream flows in high pressure turbines[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(11): 112501. doi: 10.1115/1.4024867
    [11] POPOVIĆ I, HODSON H P. Aerothermal impact of the interaction between hub leakage and mainstream flows in highly-loaded high pressure turbine blades[J]. Journal of Turbomachinery, 2013, 135(6): 061014. doi: 10.1115/1.4023621
    [12] SCHUEPBACH P. Influence of rim seal purge flow on performance of an endwall profiled axial turbine[D]. Lausanne: Swiss Federal Institute of Technology, 2009.
    [13] REZASOLTANI M, SCHOBEIRI M T, HAN J C. Experimental investigation of the effect of purge flow on film cooling effectiveness on a rotating turbine with nonaxisymmetric end wall contouring[J]. Journal of Turbomachinery, 2014, 136(9): 091009. doi: 10.1115/1.4027196
    [14] REGINA K, KALFAS A I, ABHARI R S, et al. Aerodynamic robustness of end wall contouring against rim seal purge flow: ASME 2014-GT-26007[R]. New York: ASME, 2014.
    [15] 程舒娴, 李志刚, 李军. 端壁造型对轮缘密封流场和密封效率的影响[J]. 西安交通大学学报, 2019, 53(3): 20-27. doi: 10.7652/xjtuxb201903004

    CHENG S X, LI Z G, LI J. Effects of endwall profiling on the unsteady flow field and sealing efficiency of rim seal[J]. Journal of Xi’an Jiao Tong University, 2019, 53(3): 20-27(in Chinese). doi: 10.7652/xjtuxb201903004
    [16] 陶志, 武晓龙, 祝培源, 等. 非轴对称端壁造型对叶片端壁气热性能影响的研究[J]. 推进技术, 2019, 40(8): 1734-1742. doi: 10.13675/j.cnki.tjjs.180513

    TAO Z, WU X L, ZHU P Y, et al. Research on effects of nonaxisymmetric endwall contouring on blade endwall aerothermal performance[J]. Journal of Propulsion Technology, 2019, 40(8): 1734-1742(in Chinese). doi: 10.13675/j.cnki.tjjs.180513
    [17] 姚韵嘉, 祝培源, 陈云, 等. 间隙位置对叶片端壁气膜冷却性能影响的实验研究[J]. 工程热物理学报, 2019, 40(10): 2327-2333.

    YAO Y J, ZHU P Y, CHEN Y, et al. Experimental study on the effect of the locations of slot jet on film cooling performance of endwall[J]. Journal of Engineering Thermophysics, 2019, 40(10): 2327-2333(in Chinese).
    [18] 祝培源, 陶志, 姚韵嘉, 等. 非轴对称端壁造型对叶片端壁综合传热特性的影响[J]. 风机技术, 2019, 61(6): 48-55. doi: 10.16492/j.fjjs.2019.06.0009

    ZHU P Y, TAO Z, YAO Y J, et al. Effects of nonaxisymmetric endwall contouring on blade endwall comprehensive heat transfer characteristics[J]. Chinese Journal of Turbomachinery, 2019, 61(6): 48-55(in Chinese). doi: 10.16492/j.fjjs.2019.06.0009
    [19] 张垲垣, 李志刚, 李军. 透平端壁冷却及泛冷却最优的端壁造型设计研究[J]. 西安交通大学学报, 2021, 55(5): 1-9. doi: 10.7652/xjtuxb202105001

    ZHANG K Y, LI Z G, LI J. Endwall contour design targeting on optimum turbine endwall cooling and phantom cooling effectiveness[J]. Journal of Xi’an Jiao Tong University, 2021, 55(5): 1-9(in Chinese). doi: 10.7652/xjtuxb202105001
    [20] BEHR T. Control of rotor tip leakage and secondary flow by casing air injection in unshrouded axial turbines[D]. Dresden: Dresden University of Technology, 2007.
    [21] REGINA K. High-pressure turbines with novel airfoils and end walls operating under engine representative aero-thermodynamic effects[D]. Lausanne: Swiss Federal Institute of Technology, 2015.
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  42
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-04-13
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答