留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于佳点集的改进麻雀搜索算法

闫少强 杨萍 朱东林 吴丰轩 阎哲

闫少强,杨萍,朱东林,等. 基于佳点集的改进麻雀搜索算法[J]. 北京航空航天大学学报,2023,49(10):2790-2798 doi: 10.13700/j.bh.1001-5965.2021.0730
引用本文: 闫少强,杨萍,朱东林,等. 基于佳点集的改进麻雀搜索算法[J]. 北京航空航天大学学报,2023,49(10):2790-2798 doi: 10.13700/j.bh.1001-5965.2021.0730
YAN S Q,YANG P,ZHU D L,et al. Improved sparrow search algorithm based on good point set[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2790-2798 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0730
Citation: YAN S Q,YANG P,ZHU D L,et al. Improved sparrow search algorithm based on good point set[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2790-2798 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0730

基于佳点集的改进麻雀搜索算法

doi: 10.13700/j.bh.1001-5965.2021.0730
基金项目: 国家自然科学基金(61703411)
详细信息
    通讯作者:

    E-mail:yyp_ing@163.com

  • 中图分类号: TP301.6

Improved sparrow search algorithm based on good point set

Funds: National Natural Science Foundation of China (61703411)
More Information
  • 摘要:

    为改善麻雀搜索算法(SSA)初始种群质量和稳定性差,易陷入局部最优的缺点,提出一种基于佳点集的改进麻雀搜索算法(GSSA)。加入佳点集使初始种群更加均匀,提升了种群多样性;结合SSA算法特点引入改进的迭代局部搜索,在不降低原算法收敛速度快的基础上,使算法的搜索能力更加灵活;在算法中加入逐维透镜成像反向学习机制,减少各个维度间的干扰,帮助算法跳出局部最优并加速收敛。经12个测试函数仿真实验,并借助Wilcoxon秩和检验、平均误差M等证明了GSSA在寻优精度和稳定性等寻优性能都有较大的提升,且收敛速度更快。

     

  • 图 1  佳点集分布

    Figure 1.  Distribution of good point sets

    图 2  改进的迭代局部搜索原理

    Figure 2.  Improved iterative local search principle

    图 3  透镜反向学习原理

    Figure 3.  Principle of len reverse learning

    图 4  各改进策略结果对比

    Figure 4.  Comparison of improvement strategies

    图 5  各算法的平均收敛曲线

    Figure 5.  Average convergences curves of test function

    图 6  测试函数排序雷达图

    Figure 6.  Radar diagram of test function sorting

    表  1  参数设置

    Table  1.   Parameter settings

    算法abnSPDDSk
    GWO2→0
    WOA1
    MWOA12000
    SSA0.80.20.2
    CSSA0.80.20.2
    GSSA0.80.20.212000
    下载: 导出CSV

    表  2  测试函数

    Table  2.   Test function

    函数维度搜索区域理论值
    ${F_1}\left( x \right) =\displaystyle\sum \limits_{i = 1}^n x_i^2$30[−100,100]0
    ${F_2}\left( x \right) = \displaystyle\sum \limits_{i = 1}^n \left| { {x_i} } \right| + \displaystyle\prod \limits_{i = 1}^n \left| { {x_i} } \right|$30[−100,100]0
    ${F_3}\left( x \right) = {\max _i}\left\{ {\left| {{x_i}} \right|,1 \leqslant i \leqslant n} \right\}$30[−100,100]0
    ${F_4}\left( x \right) = \displaystyle\sum \limits_{i = 1}^{n - 1} \left[ {100{ {({x_{i + 1} } - x_i^2)}^2} + { {({x_i} - 1)}^2} } \right]$30[−30,30]0
    ${F_5}\left( x \right) = \displaystyle\sum \limits_{i = 1}^n {\left( {\left[ { {x_i} + 0.5} \right]} \right)^2}$30[−100,100]0
    ${F_6}\left( x \right) = \displaystyle\sum \limits_{i = 1}^n - {x_i}\sin \left( {\sqrt {\left| { {x_i} } \right|} } \right)$30[−500,500]−12569.4
    ${F_7}\left( x \right) = \dfrac{1}{ {4\;000} }\displaystyle\sum \limits_{i = 1}^n x_i^2 - \displaystyle\prod \limits_{i = 1}^n \cos \left( {\frac{ { {x_i} } }{ {\sqrt i } } } \right) + 1$30[−600,600]0
    $\begin{array}{l} {F_8}\left( x \right) = \dfrac{ {\text{π} } }{n}\Biggr\{ {10{\text{sin} }\left( { {\text{π} }{y_1} } \right) + \displaystyle\sum \limits_{i = 1}^{n - 1} { {\left( { {y_i} - 1} \right)}^2} } \;\cdot \\ \qquad{\left[ {1 + 10{\text{si} }{ {\text{n} }^2}\left( { {\text{π} }{y_{i + 1} } } \right)} \right] + } \\ \qquad{ { {\left( { {y_n} - 1} \right)}^2} } \Biggr\} + \displaystyle\sum \limits_{i = 1}^n u\left( { {x_i},10,100,4} \right) \\ \qquad{y_i} = 1 + \dfrac{ { {x_i} + 1} }{4} \\\end{array}$30[−50,50]0
    $\begin{gathered} {F_9}\left( x \right) = 0.1\Biggr\{ { {\sin }^2}\left( {3{\text{π} }{x_1} } \right) + \displaystyle\sum \limits_{i = 1}^n { {\left( { {x_i} - 1} \right)}^2} \;\cdot \\ \qquad{\left[ {1 + { {\sin }^2}\left( {3{\text{π} }{x_i} + 1} \right)} \right] + } \\ \qquad { {\text{ } }{ {\left( { {x_n} - 1} \right)}^2}\left[ {1 + { {\sin }^2}\left( {2{\text{π} }{x_n} } \right)} \right]} \Biggr\} + \\ \qquad \displaystyle\sum \limits_{i = 1}^n u\left( { {x_i},5,100,4} \right) \\ \end{gathered}$30[−50,50]0
    ${F_{10} }\left( x \right) = {\left( {\dfrac{1}{ {500} } + \displaystyle\sum \limits_{j = 1}^{25} {1}\Bigg/\Bigg({ {j + \displaystyle\sum \limits_{i = 1}^2 { {\left( { {x_i} - {a_{ij} } } \right)}^6} } }\Bigg) } \right)^{-1 } }$2[−65.536,
    65.536]
    0.998
    ${F_{11} }\left( x \right) = \displaystyle\sum \limits_{i = 1}^{11} {\left( { {a_i} - \frac{ { {x_1}\left( {b_i^2 + {b_1}{x_2} } \right)} }{ {b_i^2 + {b_1}{x_3} + {x_4} } } } \right)^2}$4[−5,5]0.0003
    ${F_{12} }\left( x \right) = \displaystyle\sum \limits_{i = 1}^{10} {\left[ {\left( {{\boldsymbol{X}} - {a_i} } \right){ {\left( {{\boldsymbol{X}} - {a_i} } \right)}^{\rm{T} } } + {c_i} } \right]^{ - 1} }$4[0,10]−10.5364
    下载: 导出CSV

    表  3  测试函数结果对比

    Table  3.   Comparison of test function results

    函数 算法最优值最差值均值标准差排名 函数 算法最优值最差值均值标准差排名
    F1GWO1.75×10−272.34×10−253.31×10−265.42×10−266 F7GWO03.17×10−24.59×10−39.70×10−34
    WOA2.18×10−875.74×10−732.62×10−741.05×10−733WOA01.48×10−14.93×10−32.70×10−25
    MWOA3.13×10−833.65×10−711.33×10−726.66×10−724MWOA01.64×10−15.48×10−33.00×10−26
    SSA05.91×10−631.97×10−641.08×10−635SSA00001
    CSSA00001CSSA00001
    GSSA00001GSSA00001
    F2GWO1.33×10−162.07×10−157.21×10−164.63×10−166F8GWO5.13×10−71.14×10−13.90×10−22.17×10−26
    WOA2.65×10−572.69×10−499.79×10−514.90×10−503WOA3.55×10−39.25×10−22.40×10−21.86×10−25
    MWOA1.06×10−561.57×10−489.36×10−503.45×10−494MWOA6.06×10−36.53×10−22.25×10−21.45×10−24
    SSA09.86×10−375.16×10−381.91×10−375SSA1.57×10−324.18×10−82.15×10−98.19×10−93
    CSSA03.51×10−2871.17×10−28802CSSA3.01×10−143.32×10−92.70×10−106.03×10−102
    GSSA00001GSSA1.57×10−321.04×10−143.92×10−161.90×10−151
    F3GWO5.77×10−83.64×10−67.30×10−78.46×10−74F9GWO1.01×10−19.71×10−15.42×10−11.99×10−15
    WOA4.3790.347.426.16WOA1.26×10−11.115.50×10−12.96×10−16
    MWOA1.6385.043.425.05MWOA8.24×10−29.67×10−15.37×10−12.11×10−14
    SSA08.18×10−282.73×10−291.49×10−283SSA1.35×10−321.89×10−71.42×10−83.90×10−83
    CSSA01.10×10−2974.27×10−29902CSSA1.62×10−115.14×10−83.14×10−99.25×10−92
    GSSA00001GSSA1.35×10−321.23×10−146.19×10−162.29×10−151
    F4GWO26.128.527.27.68×10−14F10GWO9.98×10−112.73.623.365
    WOA27.228.828.34.77×10−16WOA9.98×10−110.83.223.523
    MWOA27.028.828.05.22×10−15MWOA9.98×10−110.813.613.814
    SSA01.37×10−49.74×10−62.75×10−52SSA9.98×10−112.79.534.836
    CSSA8.00×10−94.20×10−44.53×10−51.07×10−43CSSA9.98×10−12.981.266.86×10−12
    GSSA08.16×10−162.72×10−171.49×10−161GSSA9.98×10−19.98×10−19.98×10−11.21×10−141
    F5GWO2.34×10−11.677.61×10−14.05×10−16F11GWO3.08×10−42.04×10−21.77×10−35.06×10−36
    WOA9.41×10−21.183.99×10−12.27×10−14WOA3.29×10−42.24×10−36.62×10−44.24×10−44
    MWOA5.41×10−28.77×10−14.07×10−12.21×10−15MWOA3.07×10−42.25×10−36.73×10−44.85×10−45
    SSA01.85×10−72.61×10−84.61×10−83SSA3.07×10−43.30×10−43.08×10−44.14×10−62
    CSSA5.28×10−126.86×10−86.71×10−91.45×10−82CSSA3.07×10−41.22×10−33.42×10−41.68×10−43
    GSSA03.57×10−161.37×10−176.55×10−171GSSA3.08×10−43.08×10−43.08×10−42.68×10−151
    F6GWO−7.20×103−2.66×103−5.94×103−1.19×1036F12GWO−10.5−5.13−10.49.87×10−13
    WOA−1.26×104−6.67×103−1.01×104−1.92×1034WOA−10.5−1.68−7.033.456
    MWOA−1.26×104−8.51×103−1.09×104−1.57×1032MWOA−10.5−1.86−7.153.255
    SSA−1.26×104−6.50×103−9.28×103−2.06×1035SSA−10.5−5.13−9.991.654
    CSSA−1.26×104−8.66×103−1.10×104−1.11×1031CSSA−10.5−10.5−10.51.44×10−151
    GSSA−1.16×10+04−8.64×10+03−1.06×104−5.11×1023GSSA−10.5−10.5−10.51.95×10−52
    下载: 导出CSV

    表  4  测试函数Wilcoxon秩和检验的p

    Table  4.   p-value of Wilcoxon rank sum test of test function

    函数GWOWOAMWOASSACSSA
    F11.21×10−121.21×10−121.21×10−126.25×10−10Na
    F21.21×10−121.21×10−121.21×10−124.57×10−128.87×10−7
    F31.21×10−121.21×10−121.21×10−124.57×10−121.37×10−3
    F43.00×10−113.00×10−113.00×10−115.87×10−073.00×10−11
    F53.01×10−113.01×10−113.01×10−114.81×10−103.01×10−11
    F62.75×10−112.51×10−1 6.30×10−2 1.11×10−24.47×10−2
    F71.10×10−21.61×10−1 3.34×10−1 NaNa
    F83.02×10−113.02×10−113.02×10−112.36×10−43.02×10−11
    F93.02×10−113.02×10−113.02×10−118.14×10−73.02×10−11
    F108.54×10−111.79×10−111.79×10−111.59×10−92.13×10−1
    F118.48×10−93.02×10−115.57×10−108.48×10−98.48×10−9
    F127.13×10−82.69×10−112.69×10−113.47×10−11.10×10−11
    下载: 导出CSV

    表  5  各算法M排名

    Table  5.   Algorithm M ranking

    算法M排名
    GWO555.286
    WOA210.075
    MWOA143.853
    SSA174.494
    CSSA129.612
    GSSA68.021
    下载: 导出CSV
  • [1] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
    [2] 李雅丽, 王淑琴, 陈倩茹, 等. 若干新型群智能优化算法的对比研究[J]. 计算机工程与应用, 2020, 56(22): 1-12.

    LI Y L, WANG S Q, CHEN Q R, et al. Comparative study of several new swarm intelligence optimization algorithms[J]. Computer Engineering and Applications, 2020, 56(22): 1-12(in Chinese).
    [3] 吕鑫, 慕晓冬, 张钧. 基于改进麻雀搜索算法的多阈值图像分割[J]. 系统工程与电子技术, 2021, 43(2): 318-327.

    LYU X, MU X D, ZHANG J. Multi-threshold image segmentation based on improved sparrow search algorithm[J]. Systems Engineering and Electronics, 2021, 43(2): 318-327(in Chinese).
    [4] 吕鑫, 慕晓冬, 张钧, 等. 混沌麻雀搜索优化算法[J]. 北京航空航天大学学报, 2021, 47(8): 1712-1720.

    LYU X, MU X D, ZHANG J, et al. Chaos sparrow search optimization algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1712-1720(in Chinese).
    [5] 汤安迪, 韩统, 徐登武, 等. 基于混沌麻雀搜索算法的无人机航迹规划方法[J]. 计算机应用, 2021, 41(7): 2128-2136.

    TANG A D, HAN T, XU D W, et al. Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm[J]. Journal of Computer Applications, 2021, 41(7): 2128-2136(in Chinese).
    [6] 陈义雄, 梁昔明, 黄亚飞. 基于佳点集构造的改进量子粒子群优化算法[J]. 中南大学学报(自然科学版), 2013, 44(4): 1409-1414.

    CHEN Y X, LIANG X M, HUANG Y F. Improved quantum particle swarm optimization based on good-point set[J]. Journal of Central South University (Science and Technology), 2013, 44(4): 1409-1414(in Chinese).
    [7] 张达敏, 徐航, 王依柔, 等. 嵌入Circle映射和逐维小孔成像反向学习的鲸鱼优化算法[J]. 控制与决策, 2021, 36(5): 1173-1180.

    ZHANG D M, XU H, WANG Y R, et al. Whale optimization algorithm for embedded Circle mapping and onedimensional oppositional learning based small hole imaging[J]. Control and Decision, 2021, 36(5): 1173-1180(in Chinese).
    [8] 华罗庚, 王元. 数论在近代分析中的应用[M]. 北京: 科学出版社, 1978: 1-99.

    HUA L G, WANG Y. Application of number theory in modern analysis [M]. Beijing: Science Press, 1978: 1-99(in Chinese).
    [9] GAN C, CAO W H, WU M, et al. A new bat algorithm based on iterative local search and stochastic inertia weight[J]. Expert Systems with Applications, 2018, 104: 202-212. doi: 10.1016/j.eswa.2018.03.015
    [10] YANG X S. A new metaheuristic bat-inspired algorithm[C]//Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Berlin: Springer, 2010: 65-74.
    [11] MOLINA D, LATORRE A, HERRERA F. SHADE with iterative local search for large-scale global optimization[C]// 2018 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE Press, 2018: 1-8.
    [12] XIA X W, LIU J N, LI Y X. Particle swarm optimization algorithm with reverse-learning and local-learning behavior[J]. Journal of Software, 2014, 9(2): 350-357.
    [13] 何杰光, 彭志平, 崔得龙, 等. 一种多反向学习的教与学优化算法[J]. 工程科学与技术, 2019, 51(6): 159-167.

    HE J G, PENG Z P, CUI D L, et al. Multi-opposition teaching-learning-based optimization[J]. Advanced Engineering Sciences, 2019, 51(6): 159-167(in Chinese).
    [14] RAHNAMAYAN S, TIZHOOSH H R, SALAMA M M A. Opposition-based differential evolution[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(1): 64-79. doi: 10.1109/TEVC.2007.894200
    [15] 龙文, 伍铁斌, 唐明珠, 等. 基于透镜成像学习策略的灰狼优化算法[J]. 自动化学报, 2020, 46(10): 2148-2164.

    LONG W, WU T B, TANG M Z, et al. Grey wolf optimizer algorithm based on lens imaging learning strategy[J]. Acta Automatica Sinica, 2020, 46(10): 2148-2164(in Chinese).
    [16] OUYANG C T, ZHU D L, QIU Y X. Lens learning sparrow search algorithm[J]. Mathematical Problems in Engineering, 2021, 2021: 1-17.
  • 加载中
图(6) / 表(5)
计量
  • 文章访问数:  634
  • HTML全文浏览量:  65
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-03
  • 录用日期:  2022-01-25
  • 网络出版日期:  2022-01-29
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答