留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PINN模型的导弹气动特性快速预测技术

蔺佳哲 周岭 武频 袁雯琰 周铸

蔺佳哲,周岭,武频,等. 基于PINN模型的导弹气动特性快速预测技术[J]. 北京航空航天大学学报,2023,49(10):2669-2678 doi: 10.13700/j.bh.1001-5965.2021.0738
引用本文: 蔺佳哲,周岭,武频,等. 基于PINN模型的导弹气动特性快速预测技术[J]. 北京航空航天大学学报,2023,49(10):2669-2678 doi: 10.13700/j.bh.1001-5965.2021.0738
LIN J Z,ZHOU L,WU P,et al. Rapid prediction technology of missile aerodynamic characteristics based on PINN model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2669-2678 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0738
Citation: LIN J Z,ZHOU L,WU P,et al. Rapid prediction technology of missile aerodynamic characteristics based on PINN model[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2669-2678 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0738

基于PINN模型的导弹气动特性快速预测技术

doi: 10.13700/j.bh.1001-5965.2021.0738
详细信息
    通讯作者:

    E-mail:zlkk72@sina.com

  • 中图分类号: V211.24;TJ760.11

Rapid prediction technology of missile aerodynamic characteristics based on PINN model

More Information
  • 摘要:

    随着内嵌物理机理神经网络(PINN)模型的兴起,PINN模型开始应用于许多学科领域。为了实现导弹气动特性的快速预测,借助工程算法,构建了导弹气动数据集,以此训练导弹气动特性预测模型,包含基于多任务学习的神经网络(MTLNN)模型及在MTLNN模型基础上内嵌物理知识的PINN模型。数值模拟通过选取测试集,对比了MTLNN模型和PINN模型的预测效果,结果表明:PINN模型的预测精度较高,且基本控制在1%以内。探究PINN模型的泛化能力,测试集选取导弹气动数据集包络范围之外的数据,PINN模型预测精度仍然高于MTLNN模型。由于PINN模型引入了气动特性参数之间的物理机理,模型对训练样本数量的依赖程度降低,可以进一步节约数据获取成本,为导弹优化设计提供有力工具。

     

  • 图 1  导弹气动特性预测的流程

    Figure 1.  Flow chart of missile aerodynamic characteristics prediction

    图 2  基于多任务学习的神经网络结构框图

    Figure 2.  Block diagram of neural network structure based on multi-task learning

    图 3  PINN 模型结构框图

    Figure 3.  Structural block diagram of PINN model

    图 4  某型战术导弹二维截面

    Figure 4.  Two-dimensional section of a tactical missile

    图 5  CA、CN、Cmz、Xp的预测值与真实值RMSE随训练样本数的变化

    Figure 5.  RMSE of prediction results and real values of CA, CN, Cmz, Xp changing with number of training samples

    图 6  内插情况下 CA、CN、Cmz、Xp的预测结果

    Figure 6.  Prediction results of CA, CN, Cmz, Xp in case of interpolation

    图 7  内插情况下CACNCmzXp的预测结果与真实值的RMSE和MRE

    Figure 7.  RMSE and MRE of prediction results and real values of CA, CN, Cmz, Xp in case of interpolation

    图 8  外插情况下CA、CN、Cmz、Xp的预测结果

    Figure 8.  Prediction results of CA、CN, Cmz, Xp in case of extrapolation

    图 9  外插情况下CA、CN、CmzXp的预测值与真实值的RMSE和MRE

    Figure 9.  RMSE and MRE of prediction results and real values of CA, CN, Cmz, Xp in case of extrapolation

    图 10  物理知识体量和训练数据数量二者的关系

    Figure 10.  Relationship between volume of physical knowledge and amount of training data

    图 11  CNCmzXp的预测值与真实值RMSE、MRE随训练样本数的变化

    Figure 11.  RMSE and MRE of prediction results and real values of CN, Cmz, Xp changing with number of training samples

    表  1  基于多任务学习的网络参数

    Table  1.   Network parameters based on multi-task learning

    编号结构类型神经元节点数层数激活函数
    1共享层/隐藏层10241relu
    2共享层/隐藏层5121relu
    3共享层/隐藏层2563relu
    4共享层/隐藏层1281relu
    5任务层/隐藏层641relu
    6任务层/隐藏层323relu
    7任务层/隐藏层165relu
    8任务层/隐藏层84relu
    9任务层/输出层11linear
    下载: 导出CSV

    表  2  不同状态的外插对比

    Table  2.   Extrapolation comparison of different states

    测试集气动特性参数预测误差RMSE误差减少/%测试集气动特性参数预测误差RMSE误差减少/%
    MTLNN模型PINN模型MTLNN模型PINN模型
    第1组CA0.0036650.003758第3组CA0.0033370.003812
    CN0.1022280.0936038.44CN0.0606440.02703555.42
    Cmz0.1192240.07615236.13Cmz0.0472690.0434828.01
    Xp0.0042390.00213449.67Xp0.0022800.003299
    第2组CA0.0040960.00259136.73第4组CA0.0026050.002937
    CN0.0453460.02693740.60CN0.0464990.03805218.17
    Cmz0.0473110.03031435.93Cmz0.0530120.04353717.87
    Xp0.0018880.00161314.56Xp0.0016150.0014818.28
    下载: 导出CSV
  • [1] 胡伟杰, 黄增辉, 刘学军, 等. 基于自动核构造高斯过程的导弹气动性能预测[J]. 航空学报, 2021, 42(4): 524093.

    HU W J, HUANG Z H, LIU X J, et al. Missile aerodynamic performance prediction of Gaussian process through automatic kernel construction[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524093(in Chinese).
    [2] 原智杰, 张公平, 崔茅, 等. 基于神经网络的导弹气动参数预测[J]. 航空兵器, 2020, 27(5): 28-32.

    YUAN Z J, ZHANG G P, CUI M, et al. Prediction of missile’s aerodynamic parameters based on neural network[J]. Aero Weaponry, 2020, 27(5): 28-32(in Chinese).
    [3] 王怡星, 韩仁坤, 刘子扬, 等. 流体力学深度学习建模技术研究进展[J]. 航空学报, 2021, 42(4): 524779.

    WANG Y X, HAN R K, LIU Z Y, et al. Progress of deep learning modeling technology for fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524779(in Chinese).
    [4] 陈冰雁, 刘传振, 白鹏, 等. 使用深度残差网络的乘波体气动性能预测[J]. 空气动力学学报, 2019, 37(3): 505-509.

    CHEN B Y, LIU C Z, BAI P, et al. Aerodynamic prediction for waveriders using deep residual learning[J]. Acta Aerodynamica Sinica, 2019, 37(3): 505-509(in Chinese).
    [5] 柴聪聪, 王强, 易贤, 等. 基于卷积神经网络的结冰翼型气动参数预测[J]. 飞行力学, 2021, 39(5): 13-18.

    CHAI C C, WANG Q, YI X, et al. Aerodynamic parameters prediction of airfoil ice accretion based on convolutional neural network[J]. Flight Dynamics, 2021, 39(5): 13-18(in Chinese).
    [6] 陈海, 钱炜祺, 何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报, 2018, 36(2): 294-299.

    CHEN H, QIAN W Q, HE L. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica, 2018, 36(2): 294-299(in Chinese).
    [7] 吕召阳, 聂雪媛, 赵奥博. 基于CNN机翼气动系数预测[J]. 北京航空航天大学学报, 2023, 49(3): 674-680.

    LYU Z Y, NIE X Y, ZHAO A B. Prediction of wing aerodynamic coefficient based on CNN[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(3): 674-680(in Chinese).
    [8] 聂春生, 黄建栋, 王迅, 等. 基于POD方法的复杂外形飞行器热环境快速预测方法[J]. 空气动力学学报, 2017, 35(6): 760-765.

    NIE C S, HUANG J D, WANG X, et al. Fast aeroheating prediction method for complex shape vehicles based on proper orthogonal decomposition[J]. Acta Aerodynamica Sinica, 2017, 35(6): 760-765(in Chinese).
    [9] 侯强, 苏纬仪, 孙斐, 等. 高超声速乘波体扩容设计及流场快速预测[J]. 航空动力学报, 2021, 36(3): 564-574.

    HOU Q, SU W Y, SUN F, et al. Design of improving volumetric efficiency of hypersonic waverider and rapid prediction of flow field[J]. Journal of Aerospace Power, 2021, 36(3): 564-574(in Chinese).
    [10] 张智超, 高太元, 张磊, 等. 基于径向基神经网络的气动热预测代理模型[J]. 航空学报, 2021, 42(4): 524167.

    ZHANG Z C, GAO T Y, ZHANG L, et al. Aeroheating agent model based on radial basis function neural network[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524167(in Chinese).
    [11] 张天姣, 钱炜祺, 周宇, 等. 人工智能与空气动力学结合的初步思考[J]. 航空工程进展, 2019, 10(1): 1-11.

    ZHANG T J, QIAN W Q, ZHOU Y, et al. Preliminary thoughts on the combination of artificial intelligence and aerodynamics[J]. Advances in Aeronautical Science and Engineering, 2019, 10(1): 1-11(in Chinese).
    [12] 何磊, 张显才, 钱炜祺, 等. 基于长短时记忆神经网络的非定常气动力建模方法[J]. 飞行力学, 2021, 39(5): 8-12.

    HE L, ZHANG X C, QIAN W Q, et al. Unsteady aerodynamics modeling method based on long short-term memory neural network[J]. Flight Dynamics, 2021, 39(5): 8-12(in Chinese).
    [13] 杜涛, 许晨舟, 王国辉, 等. 人工智能气动特性预测技术在火箭子级落区控制项目的应用[J]. 宇航学报, 2021, 42(1): 61-73.

    DU T, XU C Z, WANG G H, et al. The application of aerodynamic coefficients prediction technique via artificial intelligence method to rocket first stage landing area control project[J]. Journal of Astronautics, 2021, 42(1): 61-73(in Chinese).
    [14] 柴聪聪, 易贤, 郭磊, 等. 基于BP神经网络的冰形特征参数预测[J]. 实验流体力学, 2021, 35(3): 16-21.

    CHAI C C, YI X, GUO L, et al. Prediction of ice shape characteristic parameters based on BP nerual network[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(3): 16-21(in Chinese).
    [15] 金晓威, 赖马树金, 李惠. 物理增强的流场深度学习建模与模拟方法[J]. 力学学报, 2021, 53(10): 2616-2629.

    JIN X W, LAI M S J, LI H. Physics-enhanced deep learning methods for modelling and simulating flow fields[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(10): 2616-2629(in Chinese).
    [16] KARNIADAKIS G E, KEVREKIDIS I G, LU L, et al. Physics-informed machine learning[J]. Nature Reviews Physics, 2021, 3(6): 422-440. doi: 10.1038/s42254-021-00314-5
    [17] 赵暾, 周宇, 程艳青, 等. 基于内嵌物理机理神经网络的热传导方程的正问题及逆问题求解[J]. 空气动力学学报, 2021, 39(5): 19-26.

    ZHAO T, ZHOU Y, CHENG Y Q, et al. Solving forward and inverse problems of the heat conduction equation using physics-informed neural networks[J]. Acta Aerodynamica Sinica, 2021, 39(5): 19-26(in Chinese).
    [18] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.

    ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689(in Chinese).
    [19] RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. doi: 10.1016/j.jcp.2018.10.045
    [20] MAO Z P, JAGTAP A D, KARNIADAKIS G E. Physics-informed neural networks for high-speed flows[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 360: 112789. doi: 10.1016/j.cma.2019.112789
    [21] RAO C P, SUN H, LIU Y. Physics-informed deep learning for incompressible laminar flows[J]. Theoretical and Applied Mechanics Letters, 2020, 10(3): 207-212. doi: 10.1016/j.taml.2020.01.039
    [22] JIN X W, CAI S Z, LI H, et al. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations[J]. Journal of Computational Physics, 2021, 426: 109951. doi: 10.1016/j.jcp.2020.109951
    [23] BUHENDWA A B, ADAMI S, ADAMS N A. Inferring incompressible two-phase flow fields from the interface motion using physics-informed neural networks[J]. Machine Learning With Applications, 2021, 4: 100029. doi: 10.1016/j.mlwa.2021.100029
    [24] CHEN W Q, WANG Q, HESTHAVEN J S, et al. Physics-informed machine learning for reduced-order modeling of nonlinear problems[J]. Journal of Computational Physics, 2021, 446: 110666. doi: 10.1016/j.jcp.2021.110666
    [25] WANG K, CHEN Y, MEHANA M, et al. A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media[J]. Journal of Computational Physics, 2021, 443: 110526. doi: 10.1016/j.jcp.2021.110526
    [26] 张钰, 刘建伟, 左信. 多任务学习[J]. 计算机学报, 2020, 43(7): 1340-1378.

    ZHANG Y, LIU J W, ZUO X. Survey of multi-task learning[J]. Chinese Journal of Computers, 2020, 43(7): 1340-1378(in Chinese).
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  289
  • HTML全文浏览量:  350
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 录用日期:  2022-01-25
  • 网络出版日期:  2022-02-23
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答