留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向多重耗损失效的民用飞机运行风险评估

吴雨婷 陆中 宋海靖 周伽

吴雨婷,陆中,宋海靖,等. 面向多重耗损失效的民用飞机运行风险评估[J]. 北京航空航天大学学报,2023,49(10):2807-2816 doi: 10.13700/j.bh.1001-5965.2021.0739
引用本文: 吴雨婷,陆中,宋海靖,等. 面向多重耗损失效的民用飞机运行风险评估[J]. 北京航空航天大学学报,2023,49(10):2807-2816 doi: 10.13700/j.bh.1001-5965.2021.0739
WU Y T,LU Z,SONG H J,et al. Operation risk assessment of civil aircraft for multiple wear-out failure modes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2807-2816 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0739
Citation: WU Y T,LU Z,SONG H J,et al. Operation risk assessment of civil aircraft for multiple wear-out failure modes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2807-2816 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0739

面向多重耗损失效的民用飞机运行风险评估

doi: 10.13700/j.bh.1001-5965.2021.0739
基金项目: 国家自然科学基金(U1733124); 航空科学基金(20180252002);民航安全能力建设基金(2021-196)
详细信息
    通讯作者:

    E-mail:luzhong@nuaa.edu.cn

  • 中图分类号: V328

Operation risk assessment of civil aircraft for multiple wear-out failure modes

Funds: National Natural Science Foundation of China (U1733124); Aeronautical Science Foundation of China(20180252002); Funds for Civil Aviation Safety Capacity Building (2021-196)
More Information
  • 摘要:

    针对民用飞机部件具有多重失效的特点,提出一种面向多重耗损失效模式的运行风险评估方法。以机队运行失效数据为样本,构建基于混合威布尔分布的多重失效模型,提出基于期望最大(EM)算法的混合威布尔分布参数估计方法,并利用粒子群优化(PSO)算法对EM算法进行优化,提高了参数估计精度;以基于混合威布尔分布的多重失效模型为基础,利用蒙特卡罗仿真的方法提出多重失效模式影响下的机队缺陷飞机数量(DA)预测算法;构建贝叶斯网络模型以分析初因事件发生条件下的不安全后果发生概率(CP),并结合由历史运营经验得到的死亡率(IR)和未检出率(ND),计算总体未纠正机队风险(RT)。实例表明:所提风险评估方法可以直接应用于多重失效模式导致的机队风险评估,所提模型参数估计方法相比极大似然估计和最小二乘估计方法,均方根误差分别降低了80.6%和85.7%。

     

  • 图 1  基于PSO-EM算法的混合威布尔分布参数估计方法

    Figure 1.  Parameter estimation method of mixed Weibull distribution based on PSO-EM algorithm

    图 2  基于蒙特卡罗仿真的DA预测方法流程

    Figure 2.  DA prediction process based on Monte Carlo

    图 3  因果链建模过程

    Figure 3.  Cause and effect chain modeling process

    图 4  VE推理示例BN结构

    Figure 4.  Example BN of VE inference

    图 5  机队裂纹失效概率密度函数拟合结果

    Figure 5.  Fitting results of probability density function for fleet crack failure

    图 6  机队当前役龄状况

    Figure 6.  Current service age of fleet

    图 7  机翼裂纹失效因果链

    Figure 7.  Causal chain of wing rib crack failure

    图 8  化简后的案例BN

    Figure 8.  Simplified BN of case

    表  1  机队运行寿命数据

    Table  1.   Fleet operational failure data

    序号时间/
    飞行循环
    序号时间/
    飞行循环
    序号时间/
    飞行循环
    序号时间/
    飞行循环
    114106620211109781618196
    227867675012146601718558
    351458725313151101819636
    458779975314155591923603
    5608610994415175272023924
    下载: 导出CSV

    表  2  模型参数初值及边界值

    Table  2.   Initial values and boundary values of model parameters

    模型参数${ \pi _1}$${ \pi _2}$$ {\alpha _1} $$ {\alpha _2} $
    初值0.350.655876.117526.4
    边界下限0.10.5528815773
    边界上限0.50.8646419279
    下载: 导出CSV

    表  3  多重失效模型参数估计结果

    Table  3.   Parameters’ estimation results of multiple failure model

    估计方法${ \pi_1}$${ \pi_2}$$ {\alpha _1} $$ {\alpha _2} $δRMSE
    本文方法0.290.715412.717468.10.0024
    基于PSO
    的LSE
    0.260.745384.516991.70.0126
    基于PSO
    的MLE
    0.260.745339.916645.80.0168
    下载: 导出CSV

    表  4  BN节点信息

    Table  4.   Node information in BN

    节点 事件 状态
    A 翼肋裂纹 1
    0
    B 桁条/腹板失效 1
    0
    C 蒙皮失效 1
    0
    D 失压 1
    完全失去控制 2
    部分失去控制 3
    无影响 4
    E 空中解体 1
    坠毁 2
    人员死亡 3
    跑道偏离 4
    无影响 5
    下载: 导出CSV

    表  5  节点D条件概率

    Table  5.   Conditional probability of node D

    C$P\left( {D = 1\left| C \right.} \right)$$P\left( {D = 2\left| C \right.} \right)$$P\left( {D = 3\left| C \right.} \right)$$P\left( {D = 4\left| C \right.} \right)$
    10.50.0010.050.449
    00001
    下载: 导出CSV

    表  6  节点E条件概率

    Table  6.   Conditional probability of node E

    D$P\left( {E = 1\left| D \right.} \right)$$P\left( {E = 2\left| D \right.} \right)$$P\left( {E = 3\left| D \right.} \right)$$P\left( {E = 4\left| D \right.} \right)$$P\left( {E = 5\left| D \right.} \right)$
    10.0010.0050.0100.984
    20.50.5000
    30.0010.0100.10.889
    400001
    下载: 导出CSV

    表  7  四种不安全后果的死亡率

    Table  7.   The injury ratio of four unsafe outcomes

    不安全后果死亡率
    人员死亡0.001
    跑道偏离0.03
    坠毁0.98
    空中解体1
    下载: 导出CSV
  • [1] SHAKIR H M, IQBAL B. Application of Lean principles and software solutions for maintenance records in continuing airworthiness management organisations[J]. The Aeronautical Journal, 2018, 122(1254): 1263-1274. doi: 10.1017/aer.2018.65
    [2] SENOL M B. Evaluation and prioritization of technical and operational airworthiness factors for flight safety[J]. Aircraft Engineering and Aerospace Technology, 2020, 92(7): 1049-1061. doi: 10.1108/AEAT-03-2020-0058
    [3] ARNALDO V R M, GÓMEZ C V F, PEREZ S L, et al. Prediction of aircraft safety incidents using Bayesian inference and hierarchical structures[J]. Safety Science, 2018, 104: 216-230. doi: 10.1016/j.ssci.2018.01.008
    [4] TORREGOSA R F, HU W. Probabilistic risk analysis of fracture of aircraft structures using a Bayesian approach to update the distribution of the equivalent initial flaw sizes[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(11): 1092-1101.
    [5] ZHOU D, ZHUANG X, ZUO H F. A novel three-parameter weibull distribution parameter estimation using chaos simulated annealing particle swarm optimization in civil aircraft risk assessment[J]. Arabian Journal for Science and Engineering, 2021, 46(9): 8311-8328. doi: 10.1007/s13369-021-05467-0
    [6] BANGHART M, BIAN L K, STRAWDERMAN L, et al. Risk assessment on the EA-6B aircraft utilizing Bayesian networks[J]. Quality Engineering, 2017, 29(3): 499-511. doi: 10.1080/08982112.2017.1319957
    [7] HOSKOVA M, ZIEJA M, WOCH M, et al. A method to evaluate an aircraft operational risk[C]//Safety and Reliability – Safe Societies in a Changing World. London: CRC Press, 2018: 1441-1446.
    [8] WANG W, ZHANG T W, WANG L. Markov chain-based flight operations risk analysis[C]// 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Piscataway: IEEE Press, 2018: 2441-2445.
    [9] Transport Airplane Directorate. Transport airplane risk assessment methodology handbook: PS- ANM-25-05[S]. Washington, D. C. : Federal Aviation Administration, 2011.
    [10] VIOLETTE M G, SAFARIAN P, HAN N, et al. Transport airplane risk analysis[J]. Journal of Aircraft, 2015, 52(2): 395-402. doi: 10.2514/1.C032663
    [11] 张子文, 陆中. 基于蒙特卡洛仿真的运输类飞机耗损失效风险评估[J]. 航空计算技术, 2020, 50(3): 35-39.

    ZHANG Z W, LU Z. Risk assessment of transport aircraft based on Monte Carlo simulation targeted on wear-out failure[J]. Aeronautical Computing Technique, 2020, 50(3): 35-39(in Chinese).
    [12] 郭媛媛, 孙有朝, 李龙彪. 基于蒙特卡罗方法的民用飞机故障风险评估方法[J]. 航空学报, 2017, 38(10): 221126.

    GUO Y Y, SUN Y C, LI L B. Failure risk assessment method of civil aircraft based on Monte Carlo method[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10): 221126(in Chinese).
    [13] BIAN T A, ZHENG H Y, YIN L K, et al. Failure mode and effects analysis based on D numbers and TOPSIS[J]. Quality and Reliability Engineering International, 2018, 34(4): 501-515. doi: 10.1002/qre.2268
    [14] FATTAHI R, TAVAKKOLI-MOGHADDAM R, KHALILZADEH M, et al. A novel FMEA model based on fuzzy multiple-criteria decision-making methods for risk assessment[J]. Journal of Enterprise Information Management, 2020, 33(5): 881-904. doi: 10.1108/JEIM-09-2019-0282
    [15] HE L L, LU Z Z, LI X Y. Failure-mode importance measures in structural system with multiple failure modes and its estimation using copula[J]. Reliability Engineering & System Safety, 2018, 174: 53-59.
    [16] XU M, DROGUETT E L, LINS I D, et al. On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation[J]. Reliability Engineering & System Safety, 2017, 158: 93-105.
    [17] PRATAVIERA F, ORTEGA E M M, CORDEIRO G M, et al. A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems[J]. Reliability Engineering & System Safety, 2018, 176: 13-26.
    [18] MAZZEO D, OLIVETI G, LABONIA E. Estimation of wind speed probability density function using a mixture of two truncated normal distributions[J]. Renewable Energy, 2018, 115: 1260-1280. doi: 10.1016/j.renene.2017.09.043
    [19] LU Z, DONG L, ZHOU J. Nonlinear least squares estimation for parameters of mixed weibull distributions by using particle swarm optimization[J]. IEEE Access, 2019, 7: 60545-60554. doi: 10.1109/ACCESS.2019.2915279
    [20] FLORENCE D, PATRICK P. Bayesian estimation of Weibull mixture in heavily censored data setting[J]. Reliability Engineering & System Safety, 2018, 180: 453-462.
    [21] TZOREFF E, WEISS A J. Expectation-maximization algorithm for direct position determination[J]. Signal Processing, 2017, 133: 32-39. doi: 10.1016/j.sigpro.2016.10.015
    [22] ABUALIGAH L M, KHADER A T. Unsupervised text feature selection technique based on hybrid particle swarm optimization algorithm with genetic operators for the text clustering[J]. The Journal of Supercomputing, 2017, 73(11): 4773-4795. doi: 10.1007/s11227-017-2046-2
    [23] MORADI P, GHOLAMPOUR M. A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy[J]. Applied Soft Computing, 2016, 43: 117-130. doi: 10.1016/j.asoc.2016.01.044
    [24] GORDAN B, ARMAGHANI D J, HAJIHASSANI M, et al. Prediction of seismic slope stability through combination of particle swarm optimization and neural network[J]. Engineering with Computers, 2016, 32(1): 85-97. doi: 10.1007/s00366-015-0400-7
    [25] XU S W, WU Y, WANG X F, et al. Indoor 3D visible light positioning system based on adaptive parameter particle swarm optimisation[J]. IET Communications, 2020, 14(20): 3707-3714. doi: 10.1049/iet-com.2019.1141
    [26] 赵洪利, 刘宇文. 基于蒙特卡罗模拟的航空发动机故障风险预测[J]. 北京航空航天大学学报, 2015, 41(3): 545-550.

    ZHAO H L, LIU Y W. Forecasting for aero-engine failure risk based on Monte Carlo simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3): 545-550(in Chinese).
    [27] CHEN X G. A novel reliability estimation method of complex network based on Monte Carlo[J]. Cluster Computing, 2017, 20(2): 1063-1073. doi: 10.1007/s10586-017-0826-3
    [28] URGUN D, SINGH C. A hybrid Monte Carlo simulation and multi label classification method for composite system reliability evaluation[J]. IEEE Transactions on Power Systems, 2019, 34(2): 908-917. doi: 10.1109/TPWRS.2018.2878535
    [29] DINIS D, BARBOSA-POVOA A, TEIXEIRA A P. Valuing data in aircraft maintenance through big data analytics: A probabilistic approach for capacity planning using Bayesian networks[J]. Computers & Industrial Engineering, 2019, 128: 920-936.
    [30] 于劲松, 沈琳, 唐荻音, 等. 基于贝叶斯网络的故障诊断系统性能评价[J]. 北京航空航天大学学报, 2016, 42(1): 35-40.

    YU J S, SHEN L, TANG D Y, et al. Performance evaluation of fault diagnosis system based on Bayesian network[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(1): 35-40(in Chinese).
    [31] FEROZE N, ASLAM M. Approximate Bayesian analysis of doubly censored samples from mixture of two Weibull distributions[J]. Communications in Statistics-Theory and Methods, 2019, 48(11): 2862-2878. doi: 10.1080/03610926.2018.1473430
    [32] QAZI A, DICKSON A, QUIGLEY J, et al. Supply chain risk network management: A Bayesian belief network and expected utility based approach for managing supply chain risks[J]. International Journal of Production Economics, 2018, 196: 24-42. doi: 10.1016/j.ijpe.2017.11.008
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  57
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 录用日期:  2022-05-31
  • 网络出版日期:  2022-06-23
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答