留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SSAE和相似性匹配的航空发动机剩余寿命预测

王昆 郭迎清 赵万里 周启凡 郭鹏飞

王昆,郭迎清,赵万里,等. 基于SSAE和相似性匹配的航空发动机剩余寿命预测[J]. 北京航空航天大学学报,2023,49(10):2817-2825 doi: 10.13700/j.bh.1001-5965.2021.0741
引用本文: 王昆,郭迎清,赵万里,等. 基于SSAE和相似性匹配的航空发动机剩余寿命预测[J]. 北京航空航天大学学报,2023,49(10):2817-2825 doi: 10.13700/j.bh.1001-5965.2021.0741
WANG K,GUO Y Q,ZHAO W L,et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2817-2825 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0741
Citation: WANG K,GUO Y Q,ZHAO W L,et al. Remaining useful life prediction of aeroengine based on SSAE and similarity matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2817-2825 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0741

基于SSAE和相似性匹配的航空发动机剩余寿命预测

doi: 10.13700/j.bh.1001-5965.2021.0741
基金项目: 国家科技重大专项(J2019-V-0003-0094)
详细信息
    通讯作者:

    E-mail:yqguo@nwpu.edu.cn

  • 中图分类号: V233

Remaining useful life prediction of aeroengine based on SSAE and similarity matching

Funds: National Science and Technology Major Project (J2019-V-0003-0094)
More Information
  • 摘要:

    航空发动机作为高度复杂的热力机械,其剩余寿命(RUL)预测往往作为提高安全性和经济性的重要保障。为了提高航空发动机剩余寿命预测精度,提出一种基于堆栈稀疏自编码器(SSAE)及相似性匹配的剩余寿命预测方法。以Spearman秩相关系数(SRCC)作为适应度函数,利用遗传算法(GA)对融合参数候选集进行寻优;采用SSAE的结构融合最优参数集,生成特征融合指标;采用相似性匹配的方法在历史数据库内全局搜索最优匹配的历史轨迹,得到寿命预测结果;采用美国国家航空航天局(NASA)公布的C-MAPSS数据集验证该融合指标和方法的有效性。

     

  • 图 1  RUL预测模型框架

    Figure 1.  Schematic diagram of RUL predicting model

    图 2  标准AE基本结构

    Figure 2.  Basic structure of standard AE

    图 3  SSAE建立过程

    Figure 3.  Process of building SSAE

    图 4  dropout建立过程

    Figure 4.  Process of building dropout

    图 5  样本特征提取结果

    Figure 5.  Results of extracting sample features

    图 6  相似性匹配结果

    Figure 6.  Similarity matching results

    图 7  69号发动机的T24、P30标准化结果

    Figure 7.  Training set No.69 Engine’s T24, P30 standardization results

    图 8  GA寻优总流程

    Figure 8.  GA optimization processing

    图 9  各代适应度函数变化

    Figure 9.  Fitness function changes from generation to generation

    图 10  特征融合指标

    Figure 10.  Feature synthesis indexes

    图 11  不同预测样本长度的RMSE比较

    Figure 11.  RMSE comparison of different predicting sample length

    图 12  不同预测样本长度的MAE比较

    Figure 12.  MAE comparison of different predicting sample length

    图 13  数据库容量为40、60、80、100时的预测结果

    Figure 13.  Prediction results when size of database is 40, 60, 80 and 100

    表  1  GA参数设定

    Table  1.   Parameter setting of GA

    种群规模交叉概率变异概率进化代数编码长度
    130.880.014013
    下载: 导出CSV

    表  2  SSAE模型参数设定

    Table  2.   Parameter setting of SSAE model

    参数数值
    输入层神经元个数9
    第1隐藏层神经元个数4
    第2隐藏层神经元个数1
    第3隐藏层神经元个数4
    输出层神经元个数9
    迭代轮次100
    编码器激活函数sigmoid
    解码器激活函数purelin
    稀疏参数0.1
    下载: 导出CSV

    表  3  SRCC计算结果

    Table  3.   SRCC calculation results

    传感器参数SRCC结果
    LPC出口总温T24/℃−273.525
    HPC出口总温T30/℃−273.482
    LPT出口总温T50/℃−273.601
    HPC出口总压P30/kPa0.112
    风扇物理转速Nf/(r·min−1)−0.856
    核心物理转速Nc/(r·min−1)0.113
    HPC出口静压Ps30−0.125
    燃油量与HPC出口静压比率CPhi0.833
    修正风扇转速NRf/(r·min−1)−0.855
    修正核心转速NRc/(r·min−1)0.551
    涵道比rBPR−0.744
    HPT冷却引气流量W31/(kg·s−1)1.62
    LPT冷却引气流量W32/(kg·s−1)1.62
    下载: 导出CSV

    表  4  不同数据库大小的测试集结果

    Table  4.   Experimental results of different database size

    数据库容量RMSE/次MAE/次
    4023.4025.30
    6020.8520.32
    8018.6419.25
    100 17.0817.36
    下载: 导出CSV

    表  5  各类方法比较

    Table  5.   Comparison of different methods

    方法RMSE/次S
    MLP[15]25.231205
    SVR[15]20.961381
    DLSTM[15]18.33 655
    CNN+LSTM[15]16.36 443
    DeepCNN[21]18.45
    HMM[21]45.11
    本文17.08 391
    下载: 导出CSV
  • [1] KORDESTANI M, SAIF M, ORCHARD M E, et al. Failure prognosis and applications—A survey of recent literature[J]. IEEE Transactions on Reliability, 2021, 70(2): 728-748. doi: 10.1109/TR.2019.2930195
    [2] PENG Y Z, WANG Y, ZI Y Y. Switching state-space degradation model with recursive filter/smoother for prognostics of remaining useful life[J]. IEEE Transactions on Industrial Informatics, 2019, 15(2): 822-832. doi: 10.1109/TII.2018.2810284
    [3] ELLEFSEN A L, BJØRLYKHAUG E, ÆSØY V, et al. Remaining useful life predictions for turbofan engine degradation using semi-supervised deep architecture[J]. Reliability Engineering & System Safety, 2019, 183: 240-251.
    [4] ZIO E. Prognostics and health management (PHM): Where are we and where do we (need to) go in theory and practice[J]. Reliability Engineering & System Safety, 2022, 218: 108119.
    [5] HU Y, MIAO X W, SI Y, et al. Prognostics and health management: A review from the perspectives of design, development and decision[J]. Reliability Engineering & System Safety, 2022, 217: 108063.
    [6] LI H, ZHAO W, ZHANG Y X, et al. Remaining useful life prediction using multi-scale deep convolutional neural network[J]. Applied Soft Computing, 2020, 89: 106113. doi: 10.1016/j.asoc.2020.106113
    [7] SUN W J, ZHAO R, YAN R Q, et al. Convolutional discriminative feature learning for induction motor fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1350-1359. doi: 10.1109/TII.2017.2672988
    [8] EL-THALJI I, JANTUNEN E. A summary of fault modelling and predictive health monitoring of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 252-272. doi: 10.1016/j.ymssp.2015.02.008
    [9] 谭治学, 钟诗胜, 林琳. 多源数据融合的民航发动机修后性能预测[J]. 北京航空航天大学学报, 2019, 45(6): 1106-1113. doi: 10.13700/j.bh.1001-5965.2018.0557

    TAN Z X, ZHONG S S, LIN L. Commercial aircraft engine post-repairing performance prediction based on fusion of multisource data[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(6): 1106-1113(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0557
    [10] MUNEER A, TAIB S M, NASEER S, et al. Data-driven deep learning-based attention mechanism for remaining useful life prediction: Case study application to turbofan engine analysis[J]. Electronics, 2021, 10(20): 2453. doi: 10.3390/electronics10202453
    [11] 赵洪利, 张猛. 基于随机维纳过程的航空发动机性能衰退研究[J]. 推进技术, 2021, 42(3): 488-494. doi: 10.13675/j.cnki.tjjs.190632

    ZHAO H L, ZHANG M. Performance degradation of aeroengines based on stochastic Wiener process[J]. Journal of Propulsion Technology, 2021, 42(3): 488-494(in Chinese). doi: 10.13675/j.cnki.tjjs.190632
    [12] 杜方舟, 孙有朝, 郭媛媛, 等. 基于数据的航空发动机排气温度裕度及剩余寿命计算方法[J]. 航空动力学报, 2020, 35(11): 2456-2464. doi: 10.13224/j.cnki.jasp.2020.11.023

    DU F Z, SUN Y C, GUO Y Y, et al. Calculation method of aero-engine exhaust gas temperature margin and remaining life based on data[J]. Journal of Aerospace Power, 2020, 35(11): 2456-2464(in Chinese). doi: 10.13224/j.cnki.jasp.2020.11.023
    [13] 赵洪利, 陈天铭, 郑涅. 基于特征融合多阶段相似的发动机寿命预测[J]. 系统工程与电子技术, 2021, 43(5): 1430-1436. doi: 10.12305/j.issn.1001-506X.2021.05.33

    ZHAO H L, CHEN T M, ZHENG N. Engine life prediction based on multi-stage similarity of comprehensive index[J]. Systems Engineering and Electronics, 2021, 43(5): 1430-1436(in Chinese). doi: 10.12305/j.issn.1001-506X.2021.05.33
    [14] 李京峰, 陈云翔, 项华春, 等. 基于LSTM-DBN的航空发动机剩余寿命预测[J]. 系统工程与电子技术, 2020, 42(7): 1637-1644. doi: 10.3969/j.issn.1001-506X.2020.07.28

    LI J F, CHEN Y X, XIANG H C, et al. Remaining useful life prediction for aircraft engine based on LSTM-DBN[J]. Systems Engineering and Electronics, 2020, 42(7): 1637-1644(in Chinese). doi: 10.3969/j.issn.1001-506X.2020.07.28
    [15] 李杰, 贾渊杰, 张志新, 等. 基于融合神经网络的航空发动机剩余寿命预测[J]. 推进技术, 2021, 42(8): 1725-1734. doi: 10.13675/j.cnki.tjjs.200792

    LI J, JIA Y J, ZHANG Z X, et al. Remaining useful life prediction of aeroengine based on fusion neural network[J]. Journal of Propulsion Technology, 2021, 42(8): 1725-1734(in Chinese). doi: 10.13675/j.cnki.tjjs.200792
    [16] 洪骥宇, 王华伟, 倪晓梅. 基于降噪自编码器的航空发动机性能退化评估[J]. 航空动力学报, 2018, 33(8): 2041-2048. doi: 10.13224/j.cnki.jasp.2018.08.028

    HONG J Y, WANG H W, NI X M. Assessment of performance degradation for aero-engine based on denoising autoencoder[J]. Journal of Aerospace Power, 2018, 33(8): 2041-2048(in Chinese). doi: 10.13224/j.cnki.jasp.2018.08.028
    [17] 房友龙, 贺星, 刘东风, 等. 燃气轮机健康状态组合法综合评价[J]. 推进技术, 2020, 41(8): 1903-1913. doi: 10.13675/j.cnki.tjjs.190336

    FANG Y L, HE X, LIU D F, et al. Combinatorial comprehensive assessment of gas turbine health condition[J]. Journal of Propulsion Technology, 2020, 41(8): 1903-1913(in Chinese). doi: 10.13675/j.cnki.tjjs.190336
    [18] 刘渊, 余映红, 田彦云, 等. 航空发动机排气温度基线建模新方法研究[J]. 推进技术, 2022, 43(4): 16-25. doi: 10.13675/j.cnki.tjjs.200511

    LIU Y, YU Y H, TIAN Y Y, et al. Investigation on new method for baseline modelling of aeroengine exhaust gas temperature[J]. Journal of Propulsion Technology, 2022, 43(4): 16-25(in Chinese). doi: 10.13675/j.cnki.tjjs.200511
    [19] ZHANG Q, TSE P W T, WAN X, et al. Remaining useful life estimation for mechanical systems based on similarity of phase space trajectory[J]. Expert Systems with Applications, 2015, 42(5): 2353-2360. doi: 10.1016/j.eswa.2014.10.041
    [20] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine run-to-failure simulation[C]//Proceeding of the 2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 1-9.
    [21] 彭开香, 皮彦婷, 焦瑞华, 等. 航空发动机的健康指标构建与剩余寿命预测[J]. 控制理论与应用, 2020, 37(4): 713-720.

    PENG K X, PI Y T, JIAO R H, et al. Health indicator construction and remaining useful life prediction for aircraft engine[J]. Control Theory & Applications, 2020, 37(4): 713-720(in Chinese).
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  584
  • HTML全文浏览量:  69
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-08
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-03-22
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答