留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子机械制动系统无压力传感器控制策略

赵逸云 林辉 李兵强

赵逸云,林辉,李兵强. 电子机械制动系统无压力传感器控制策略[J]. 北京航空航天大学学报,2023,49(10):2711-2720 doi: 10.13700/j.bh.1001-5965.2021.0748
引用本文: 赵逸云,林辉,李兵强. 电子机械制动系统无压力传感器控制策略[J]. 北京航空航天大学学报,2023,49(10):2711-2720 doi: 10.13700/j.bh.1001-5965.2021.0748
ZHAO Y Y,LIN H,LI B Q. Clamping force sensorless control strategies for electromechanical brake systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2711-2720 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0748
Citation: ZHAO Y Y,LIN H,LI B Q. Clamping force sensorless control strategies for electromechanical brake systems[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2711-2720 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0748

电子机械制动系统无压力传感器控制策略

doi: 10.13700/j.bh.1001-5965.2021.0748
基金项目: 国家自然科学基金(51777170); 陕西省重点研发计划高校联合重点项目(2021GXLH-01-14);民机科研项目(2018KF090226)
详细信息
    通讯作者:

    E-mail:linhui@nwpu.edu.cn

  • 中图分类号: TM921.5

Clamping force sensorless control strategies for electromechanical brake systems

Funds: National Natural Science Foundation of China (51777170); Universities Joint Key Projects of Key Research and Development Plan of Shaanxi Province (2021GXLH-01-14); Civil Aircraft Scientific Research Project (2018KF090226)
More Information
  • 摘要:

    针对低地板有轨电车电子机械制动(EMB)系统压力传感器故障问题,提出一种强耦合条件下的无压力传感器制动力伺服控制策略。基于系统转矩特征曲线,提出一种不依赖于附加机械调节机构及压力检测装置的EMB间隙调整方法。同时,考虑系统制动和缓解过程中存在的“迟滞”特性,在EMB系统刚度特征曲线的基础上,提出一种强耦合条件下的制动力估算策略,与传统方法相比,其可有效地改善制动力的估计精度,能够作为备份制动方案,提高系统的可靠性。在此基础上,设计基于Sigmoid函数的改进型扩张状态观测器(ESO)对系统中的未建模部分与外界扰动进行估计与补偿,并将观测值前馈补偿至积分反步控制器,消除系统的观测误差,提高系统的鲁棒性。通过静态实验平台验证了所提控制策略的有效性。

     

  • 图 1  低地板有轨电车电子机械制动系统结构

    Figure 1.  Structure diagram of EMB system for low-floor trams

    图 2  常规方法三角波制动力信号跟踪实验结果

    Figure 2.  Experimental results with conventional method

    图 3  输出转矩分别与制动力和电机旋转角度关系曲线

    Figure 3.  Relations of output torque with braking force and rotation angle of motor

    图 4  无压力传感器制动间隙调整流程

    Figure 4.  Flow chart of gap distance adjustment without pressure sensor

    图 5  电机旋转角度与制动力特征曲线

    Figure 5.  Characteristic curves of motor angle with clamping force

    图 6  无压力传感器控制策略框图

    Figure 6.  Block diagram of pressure sensorless control strategy

    图 7  电子机械制动系统实验平台

    Figure 7.  Experimental platform of EMB system

    图 8  无压力传感器制动间隙调整实验曲线

    Figure 8.  Experimental curves of gap distance adjustment without pressure sensor

    图 9  观测器性能测试实验曲线

    Figure 9.  Experimental curves of observer performance test

    图 10  常规方法的实验曲线

    Figure 10.  Experimental curves of conventional strategy

    图 11  本文控制策略的实验曲线

    Figure 11.  Experimental curves of proposed control strategy

    表  1  刚度模型拟合曲线系数表

    Table  1.   Coefficient of fitting curve of stiffness model

    i$ {a_{5 - i}} $$ {a_{4 - i}} $ $ {a_{3 - i}} $ $ {a_{2 - i}} $ $ {a_{1 - i}} $
    1$ 7.49 \times {10^{ - 6}} $$ - 5.88 \times {10^{ - 4}} $$ 1.74 \times {10^{ - 2}} $$ - 2.49 \times {10^{ - 1}} $2.49
    2$ - 1.55 \times {10^{ - 6}} $$ 1.21 \times {10^{ - 4}} $$ - 2.93 \times {10^{ - 3}} $$ 4.62 \times {10^{ - 3}} $1.32
    3$ 1.44 \times {10^{ - 5}} $$ - 1.14 \times {10^{ - 3}} $$ 3.38 \times {10^{ - 2}} $$ - 4.61 \times {10^{ - 1}} $3.51
    下载: 导出CSV
  • [1] 李繁飙, 黄培铭, 阳春华, 等. 基于非线性干扰观测器的飞机全电刹车系统滑模控制设计[J]. 自动化学报, 2021, 47(11): 2557-2569.

    LI F B, HUANG P M, YANG C H, et al. Sliding mode control design of aircraft electric brake system based on nonlinear disturbance observer[J]. Acta Automatica Sinica, 2021, 47(11): 2557-2569(in Chinese).
    [2] WENG J J, TIAN C, WU M L, et al. Coupled rigid-flexible modelling and dynamic characteristic analysis of electromechanical brake (EMB) units on trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2021, 235(6): 700-712. doi: 10.1177/0954409720957542
    [3] 吴萌岭, 雷驰, 陈茂林. 基于列车电机械制动系统夹紧力的控制算法优化[J]. 同济大学学报(自然科学版), 2020, 48(6): 898-903.

    WU M L, LEI C, CHEN M L. Control algorithm optimization of clamping force based on train electro-mechanical braking system[J]. Journal of Tongji University (Natural Science), 2020, 48(6): 898-903(in Chinese).
    [4] 吴萌岭, 马天和, 田春, 等. 列车制动技术发展趋势探讨[J]. 中国铁道科学, 2019, 40(1): 134-144.

    WU M L, MA T H, TIAN C, et al. Discussion on development trend of train braking technology[J]. China Railway Science, 2019, 40(1): 134-144(in Chinese).
    [5] 夏利红, 邓兆祥. 电子机械制动执行器的摩擦力矩和能耗分析[J]. 湖南大学学报(自然科学版), 2018, 45(4): 48-56.

    XIA L H, DENG Z X. Calculation and analysis of friction torque and energy dissipation of electromechanical brake actuator[J]. Journal of Hunan University (Natural Sciences), 2018, 45(4): 48-56(in Chinese).
    [6] BAEK S K, OH H K, KIM S W, et al. A clamping force performance evaluation of the electro mechanical brake using PMSM[J]. Energies, 2018, 11(11): 2876. doi: 10.3390/en11112876
    [7] MA R, ZHANG H Y, YUAN M H, et al. Chattering suppression fast terminal sliding mode control for aircraft EMA braking system[J]. IEEE Transactions on Transportation Electrification, 2021, 7(3): 1901-1914. doi: 10.1109/TTE.2021.3054510
    [8] 彭晓燕, 何磊, 吕以滨. 基于滑移率的电子机械制动模糊滑模控制[J]. 中南大学学报(自然科学版), 2018, 49(2): 360-370.

    PENG X Y, HE L, LYU Y B. Fuzzy sliding mode control based on vehicle slip ratio for electro-mechanical braking systems[J]. Journal of Central South University (Science and Technology), 2018, 49(2): 360-370(in Chinese).
    [9] LI Y J, SHIM T, SHIN D H, et al. Control system design for electromechanical brake system using novel clamping force model and estimator[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 8653-8668. doi: 10.1109/TVT.2021.3095900
    [10] EUM S, CHOI J, PARK S S, et al. Robust clamping force control of an electro-mechanical brake system for application to commercial city buses[J]. Energies, 2017, 10(2): 220. doi: 10.3390/en10020220
    [11] KWON S, LEE S, LEE J, et al. Accurate state estimation for electro-mechanical brake systems[J]. Journal of Electrical Engineering & Technology, 2019, 14(2): 889-896.
    [12] XU Z, GERADA C. Enhanced force estimation for electromechanical brake actuators in transportation vehicles[J]. IEEE Transactions on Power Electronics, 2021, 36(12): 14329-14339. doi: 10.1109/TPEL.2021.3085996
    [13] FU Y F, HU X H, WANG W R, et al. Simulation and experimental study of a new electromechanical brake with automatic wear adjustment function[J]. International Journal of Automotive Technology, 2020, 21(1): 227-238. doi: 10.1007/s12239-020-0022-y
    [14] JO C, HWANG S, KIM H. Clamping-force control for electromechanical brake[J]. IEEE Transactions on Vehicular Technology, 2010, 59(7): 3205-3212. doi: 10.1109/TVT.2010.2043696
    [15] SARIC S, BAB-HADIASHAR A, VAN DER WALT J. Estimating clamp force for brake-by-wire systems: Thermal considerations[J]. Mechatronics, 2009, 19(6): 886-895. doi: 10.1016/j.mechatronics.2009.05.001
    [16] 朱进权, 葛琼璇, 孙鹏琨, 等. 基于自抗扰的高速磁浮列车牵引控制策略[J]. 电工技术学报, 2020, 35(5): 1065-1074.

    ZHU J Q, GE Q X, SUN P K, et al. Traction-system research of high-speed maglev based on active disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2020, 35(5): 1065-1074(in Chinese).
    [17] 刘华, 汪成文, 郭新平, 等. 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139.

    LIU H, WANG C W, GUO X P, et al. Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139(in Chinese).
    [18] 石嘉, 裴忠才, 唐志勇, 等. 改进型自抗扰四旋翼无人机控制系统设计与实现[J]. 北京航空航天大学学报, 2021, 47(9): 1823-1831.

    SHI J, PEI Z C, TANG Z Y, et al. Design and realization of an improved active disturbance rejection quadrotor UAV control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1823-1831(in Chinese).
    [19] 王伟然, 吴嘉欣, 张懿, 等. 永磁同步电机模糊自整定自适应积分反步控制[J]. 电工技术学报, 2020, 35(4): 724-733.

    WANG W R, WU J X, ZHANG Y, et al. Fuzzy self-tuning adaptive integral backstepping control for permanent magnet synchronous motor[J]. Transactions of China Electrotechnical Society, 2020, 35(4): 724-733(in Chinese).
    [20] 赵亚辉, 冯明, 李卫文. 基于SMO的改进型转子位置检测方法[J]. 北京航空航天大学学报, 2020, 46(12): 2329-2338.

    ZHAO Y H, FENG M, LI W W. Improved rotor position detection method based on SMO[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(12): 2329-2338(in Chinese).
    [21] ZHAO Y Y, LIN H, LI B Q. Sliding-mode clamping force control of electromechanical brake system based on enhanced reaching law[J]. IEEE Access, 2021, 9: 19506-19515. doi: 10.1109/ACCESS.2021.3052944
    [22] 陈志旺, 张子振, 曹玉洁. 自抗扰fal函数改进及在四旋翼姿态控制中的应用[J]. 控制与决策, 2018, 33(10): 1901-1907.

    CHEN Z W, ZHANG Z Z, CAO Y J. Fal function improvement of ADRC and its application in quadrotor aircraft attitude control[J]. Control and Decision, 2018, 33(10): 1901-1907(in Chinese).
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  81
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-12
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-03-11
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答