留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基站簇多点定位原理及性能分析

宫峰勋 李孟然

宫峰勋,李孟然. 基站簇多点定位原理及性能分析[J]. 北京航空航天大学学报,2023,49(10):2567-2578 doi: 10.13700/j.bh.1001-5965.2021.0751
引用本文: 宫峰勋,李孟然. 基站簇多点定位原理及性能分析[J]. 北京航空航天大学学报,2023,49(10):2567-2578 doi: 10.13700/j.bh.1001-5965.2021.0751
GONG F X,LI M R. Principle and performance analysis of base station cluster location[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2567-2578 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0751
Citation: GONG F X,LI M R. Principle and performance analysis of base station cluster location[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2567-2578 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0751

基站簇多点定位原理及性能分析

doi: 10.13700/j.bh.1001-5965.2021.0751
基金项目: 科技部重点研发计划(2018YFC0809500)
详细信息
    通讯作者:

    E-mail:fxgong@cauc.edu.cn

  • 中图分类号: V247;TN97

Principle and performance analysis of base station cluster location

Funds: Key R & D Plan of the Ministry of Science and Technology (2018YFC0809500)
More Information
  • 摘要:

    机场场面多点定位(MLAT)利用到达时间差(TDOA)实现目标定位。针对多点定位模式存在时延标准差大、基线较长、竖直方向精确度较差、布设难度大等问题,引入基站簇概念,提出一种多点定位基站簇布站(C-MLAT)模式,揭示基站簇定位原理及性能状态,建立C-MLAT模型。基站簇内部易于时钟精确同步,简化几何精度衰减因子(GDOP)计算,GDOP分布状态证明C-MLAT在缩短基线后通过补充站或多基站簇联合定位的方式,都可满足定位需求。利用C-MLAT建立甲、乙2类布站方式,水平方向精确度误差与竖直方向精确度误差显著降低,其中,甲、乙2类C-MLAT将水平方向精确度误差分别提高到1.76 m和1.69 m,竖直方向精确度误差分别降低约26%和36%,验证了C-MLAT定位具有更佳的性能和应用优势。

     

  • 图 1  TDOA标准差变化状态

    Figure 1.  Change state of standard deviation of time difference of arrival

    图 2  C-MLAT定位模型

    Figure 2.  C-MLAT positioning model

    图 3  C-MLAT状态参数对目标坐标的影响

    Figure 3.  Influence of C-MLAT state parameters on target angular coordinates

    图 4  目标距离与定位精确度的关系

    Figure 4.  Relationship between target distance and positioning accuracy

    图 5  时延标准差与定位距离的关系

    Figure 5.  Relation between time delays standard deviation and positioning range

    图 6  TOA误差与信噪比关系

    Figure 6.  Relationship between TOA error and signal-noise ratio

    图 7  C-MLAT的GDOP

    Figure 7.  GDOP of C-MLAT

    图 8  甲类C-MLAT的GDOP

    Figure 8.  GDOP of class A C-MLAT

    图 9  乙类C-MLAT的GDOP

    Figure 9.  GDOP of class B C-MLAT

    图 10  甲类C-MLAT的HDOP和VDOP

    Figure 10.  HDOP and VDOP of class A C-MLAT

    图 11  乙类C-MLAT的HDOP和VDOP

    Figure 11.  HDOP and VDOP of class B C-MLAT

    图 12  定位覆盖与基线长度的关系

    Figure 12.  Relationship between coverage and baseline length

    图 13  补充基站与覆盖范围的关系

    Figure 13.  Relationship between supplementary base stations and coverage

    图 14  西宁曹家堡国际机场基站布局

    Figure 14.  Layout of station in Xining Caojiapu International Airport

    图 15  不考虑地形的HDOP分布

    Figure 15.  HDOP distribution regardless of terrain

    图 16  考虑地形的HDOP分布

    Figure 16.  HDOP distribution considering terrain

    表  1  甲、乙2类C-MLAT的GDOP对比

    Table  1.   Comparative of GDOP between class A C-MLAT and class B C-MLAT

    布站方式GDOP均值
    MLAT53.21
    甲类C-MLAT(N=1)73.53
    甲类C-MLAT(N=2,水平)38.69
    甲类C-MLAT(N=2,垂直)28.52
    甲类C-MLAT(N=3)6.23
    乙类C-MLAT(N=2)48.39
    乙类C-MLAT(N=3)23.88
    下载: 导出CSV

    表  2  C-MLAT系统的技术指标

    Table  2.   Technical indexes of C-MLAT system

    技术指标性能
    工作频率/MHz1090 ± 3
    工作信号模式S模式
    接收机灵敏度/dBm−90
    最大跟踪数量500
    基站簇内时间误差/ns<2
    基站簇间时间误差/ns<10
    覆盖范围依赖基站簇和补充站的数量
    定位精确度/m终端区:<7.5,其他:<20
    下载: 导出CSV

    表  3  甲类C-MLAT和MLAT的VDOP和HDOP对比

    Table  3.   Comparative of VDOP and HDOP between class A C-MLAT and MLAT m

    布站方式 HDOP均值 VDOP均值
    MLAT 43.56 36.75
    甲类C-MLAT(N=2,垂直) 32.32 26.91
    下载: 导出CSV

    表  4  乙类C-MLAT和MLAT的VDOP和HDOP对比

    Table  4.   Comparative of VDOP and HDOP between class B C-MLAT and MLAT m

    布站方式 HDOP均值 VDOP均值
    MLAT 43.56 36.75
    乙类C-MLAT(N=2) 39.14 30.61
    下载: 导出CSV

    表  5  甲、乙2类C-MLAT的VDOP和HDOP对比

    Table  5.   Comparative of VDOP and HDOP between class A C-MLAT and class B C-MLAT m

    布站方式 HDOP均值 VDOP均值
    甲类C-MLAT(N=2,垂直) 30.52 25.55
    乙类C-MLAT(N=2) 29.38 23.49
    下载: 导出CSV
  • [1] 孙卓振. 广域多点定位系统关键技术分析[D]. 成都: 电子科技大学, 2012.

    SUN Z Z. Key technology analysis of wide area multipoint positioning system[D]. Chengdu: University of Electronic Science and Technology of China, 2012(in Chinese).
    [2] CHAN Y T, HO K C. A simple and efficient estimator for hyperbolic location[J]. IEEE Transactions on Signal Processing, 1994, 42(8): 1905-1915. doi: 10.1109/78.301830
    [3] GALATI G, LEONARDI M, TOSTI M. Multilateration as a distributed sensor system: Lower bounds of accuracy[C]//Proceedings of the Radar Conference. Piscataway: IEEE Press, 2008: 196-199.
    [4] 汪波, 薛磊. 基于遗传算法的TDOA定位系统的最优布站算法[J]. 系统工程与电子技术, 2009, 31(9): 2125-2128. doi: 10.3321/j.issn:1001-506X.2009.09.022

    WANG B, XUE L. Station arrangement strategy of TDOA location system based on genetic algorithm[J]. Systems Engineering and Electronics, 2009, 31(9): 2125-2128(in Chinese). doi: 10.3321/j.issn:1001-506X.2009.09.022
    [5] 郭歆莹, 胥松寿. 基于改进型差分进化的MLAT系统布站方法研究[J]. 电子技术应用, 2021, 47(8): 101-105.

    GUO X Y, XU S S. Research on station layout of a MLAT system based on improved DE[J]. Computer Technology and Application, 2021, 47(8): 101-105(in Chinese).
    [6] 林冠英, 刘同木, 周保成. 水下定位系统的现状及应用展望[J]. 中外交流, 2016(20): 24.

    LIN G Y, LIU T M, ZHOU B C. Present situation and application prospect of underwater positioning system[J]. SINO-Foreign Exchange, 2016(20): 24(in Chinese).
    [7] MXXLOUD M L, SCHARF L L. A new subspace identification algorithm for high-resolution DOA estimation[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(10): 1382-1390. doi: 10.1109/TAP.2002.805244
    [8] TANG Y T, XU S, WANG X, et al. Direction of arrival estimation with antenna arrays based on fuzzy cerebellar model articulation controller neural network[J]. RF and Microwave Computer-Aided Engineering, 2020, 30(9): e2289.
    [9] RODGER C J, BRUNDELL J B, DOWDEN R L, et al. Location accuracy of long distance VLF lightning location network[J]. Annales Geophysicae, 2004, 22(3): 747-758. doi: 10.5194/angeo-22-747-2004
    [10] STEIN S. Algorithms for ambiguity function processing[J]. IEEE Transactions on Acoustic Speech and Signal Processing, 1981, 29(3): 588-599. doi: 10.1109/TASSP.1981.1163621
    [11] 姚金杰. 基于地面基站的目标定位技术研究[D]. 太原: 中北大学, 2011.

    YAO J J. Research on target localization technology based on ground base station[D]. Taiyuan: North University of China, 2011(in Chinese).
    [12] 白敏. 基于TDOA的陆基多点定位系统设计与定位算法研究[D]. 重庆: 重庆大学, 2010.

    BAI M. Design and algorithm research of land-based multi-point positioning system based on TDOA[D]. Chongqing: Chongqing University, 2010(in Chinese).
    [13] 孙仲康, 周一宇, 何黎星. 单多基地有源无源定位技术[M]. 北京: 国防工业出版社, 1996.

    SUN Z K, ZHOU Y Y, HE L X. Single multi-base active and passive positioning technology[M]. Beijing: National Defence Industry Press, 1996(in Chinese).
    [14] WANG B H, WANG Y L, CHEN H, et al. Array calibration of angularly dependent gain and phase uncertainties with carry-on instrumental sensors[J]. Science in China Series F:Information Sciences, 2004(6): 777-792.
    [15] WANG C, QI F, SHI G M, et al. A linear combination-based weighted least square approach for target localization with noisy range measurements[J]. Signal Processing, 2014, 94: 202-211. doi: 10.1016/j.sigpro.2013.06.005
    [16] RASHEED K. An adaptive penalty approach for constrained genetic algorithm optimization[C]//Proceedings of the 3rd Annual Conference on Genetic Programming. Amsterdam: Elsevier, 1998: 584-590.
    [17] MANTILLA-GAVIRIA I A, LEONARDI M, GALATI G, et al. Time-difference-of-arrival regularised location estimator for multilateration systems[J]. IET Radar, Sonar and Navigation, 2014, 8(5): 479-489. doi: 10.1049/iet-rsn.2013.0151
    [18] LEONARDI M, SPINELLI S, GALATI G. ADS-B/MLAT surveillance system from high altitude platform systems[C]//Proceedings of the 2011 Tyrrhenian International Workshop on Digital Communications Enhanced Surveillance of Aircraft and Vehicles. Piscataway: IEEE Press, 2011: 153-158.
    [19] EL-AZIZ M A. Source localization using TDOA and FDOA measurements based on modified cuckoo search algorithm[J]. Wireless Networks, 2017, 23(2): 487-495. doi: 10.1007/s11276-015-1158-y
    [20] HO K C, LU X N, KOVAVISARUCH L. Source localization using TDOA and FDOA measurements in the presence of receiver location errors: Analysis and solution[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 684-696. doi: 10.1109/TSP.2006.885744
    [21] NIELSEN R O. Relationship between dilution of precision for point positioning and for relative positioning with GPS[J]. Aerospace and Electronic Systems, 1997, 33(1): 333-338. doi: 10.1109/7.570809
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  182
  • HTML全文浏览量:  36
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 录用日期:  2022-01-25
  • 网络出版日期:  2022-03-09
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答