留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可预知性特殊事件下的短时交通状态预测

冯小原 陈咨霖 季楠 任毅龙

冯小原,陈咨霖,季楠,等. 可预知性特殊事件下的短时交通状态预测[J]. 北京航空航天大学学报,2023,49(10):2721-2730 doi: 10.13700/j.bh.1001-5965.2021.0758
引用本文: 冯小原,陈咨霖,季楠,等. 可预知性特殊事件下的短时交通状态预测[J]. 北京航空航天大学学报,2023,49(10):2721-2730 doi: 10.13700/j.bh.1001-5965.2021.0758
FENG X Y,CHEN Z L,JI N,et al. Short-term traffic state prediction under planned special events[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2721-2730 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0758
Citation: FENG X Y,CHEN Z L,JI N,et al. Short-term traffic state prediction under planned special events[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2721-2730 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0758

可预知性特殊事件下的短时交通状态预测

doi: 10.13700/j.bh.1001-5965.2021.0758
基金项目: 国家自然科学基金(U1964206)
详细信息
    通讯作者:

    E-mail:yilongren@buaa.edu.cn

  • 中图分类号: U491.14

Short-term traffic state prediction under planned special events

Funds: National Natural Science Foundation of China (U1964206)
More Information
  • 摘要:

    精准的短时交通状态预测是实施有效的交通管理与控制的重要依据。而可预知性特殊事件(PSEs)短时间内在其举办地点周边产生异常的交通出行需求,又因为事件发生数量少、数据样本收集困难等不利因素,往往造成预测精度难以保证。为此,通过实测数据分析了PSEs下短时交通演化特性,在此基础上,采用改进的K近邻(KNN)算法框架,提出一种短时交通状态的KNN(PSE-KNN)预测模型,并通过基于深度强化学习的实时超参数优化方法将其构建成自适应PSE-KNN(APSE-KNN)模型,最后以北京市演唱会场景为例对所提模型的效果进行了验证。结果表明:所提模型在多步预测实验中,相对于其他7种对比预测模型,平均减少残差值12.43%、降低绝对值百分比误差29.90%。证明所提模型有优异的快速调整能力,其更适应于PSEs场景下短时交通状态预测任务。

     

  • 图 1  PSEs下的交通状态演化特性分析实例

    Figure 1.  Example of traffic state evolution characteristics analysis under PSEs

    图 2  Actor-Critic框架示意图

    Figure 2.  Actor-Critic framework schematic

    图 3  演唱会影响下的短时交通状态预测残差

    Figure 3.  Residual error of short-term traffic state prediction under influence of concert

    图 4  演唱会影响下的短时交通状态预测eMAPE误差

    Figure 4.  eMAPE error of short-term traffic state prediction under influence of concert

    图 5  演唱会结束时本文APSE-KNN与PSE-KNN模型预测效果对比

    Figure 5.  Comparison of APSE-KNN and PSE-KNN prediction effect at end of concert

    表  1  PSE-KNN模型在多步预测任务中标定的最优参数

    Table  1.   Optimal parameters calibrated by PSE-KNN model in multi-step prediction task

    $f$$K$$\alpha $
    1970.9
    2570.9
    3570.8
    4540.8
    5540.7
    下载: 导出CSV
  • [1] CORBIN J. Strategies to improve management of travel for all planned special events in a region[C]//82nd Annual Meeting of the Transportation Research Board. Washington, D. C. : Federal Highway Administration, 2003.
    [2] 王鹏. 典型交通事件影响下交通流运行状态演变分析[D]. 长春: 吉林大学, 2017.

    WANG P. Analysis of traffic flow state evolution under the influence of typical traffic incident[D]. Changchun: Jilin University, 2017 (in Chinese).
    [3] 张海鹏, 杨宏业, 邬鑫珏, 等. 基于公交车GPS数据的短时交通流预测研究[J]. 内蒙古工业大学学报(自然科学版), 2018, 37(1): 75-80.

    ZHANG H P, YANG H Y, WU X J, et al. Research on short-term traffic flow forecasting based on GPS data of bus[J]. Journal of Inner Mongolia University of Technology (Natural Science Edition), 2018, 37(1): 75-80(in Chinese).
    [4] 傅成红, 杨书敏, 张阳. 改进支持向量回归机的短时交通流预测[J]. 交通运输系统工程与信息, 2019, 19(4): 130-134.

    FU C H, YANG S M, ZHANG Y. Promoted short-term traffic flow prediction model based on deep learning and support vector regression[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(4): 130-134(in Chinese).
    [5] 张文胜, 郝孜奇, 朱冀军, 等. 基于改进灰狼算法优化BP神经网络的短时交通流预测模型[J]. 交通运输系统工程与信息, 2020, 20(2): 196-203.

    ZHANG W S, HAO Z Q, ZHU J J, et al. BP neural network model for short-time traffic flow forecasting based on transformed grey wolf optimizer algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 196-203(in Chinese).
    [6] GU Y L, LU W Q, QIN L Q, et al. Short-term prediction of lane-level traffic speeds: A fusion deep learning model[J]. Transportation Research Part C:Emerging Technologies, 2019, 106: 1-16. doi: 10.1016/j.trc.2019.07.003
    [7] LI W, WANG J X, FAN R, et al. Short-term traffic state prediction from latent structures: Accuracy vs efficiency[J]. Transportation Research Part C:Emerging Technologies, 2020, 111: 72-90. doi: 10.1016/j.trc.2019.12.007
    [8] CHIKARAISHI M, GARG P, VARGHESE V, et al. On the possibility of short-term traffic prediction during disaster with machine learning approaches: An exploratory analysis[J]. Transport Policy, 2020, 98: 91-104. doi: 10.1016/j.tranpol.2020.05.023
    [9] NADI A L, SHARMA S, SNELDER M, et al. Short-term prediction of outbound truck traffic from the exchange of information in logistics hubs: A case study for the port of Rotterdam[J]. Transportation Research Part C:Emerging Technologies, 2021, 127: 103111. doi: 10.1016/j.trc.2021.103111
    [10] LI J Y, GUO F C, SIVAKUMAR A, et al. Transferability improvement in short-term traffic prediction using stacked LSTM network[J]. Transportation Research Part C:Emerging Technologies, 2021, 124: 102977. doi: 10.1016/j.trc.2021.102977
    [11] YU X J, SUN L J, YAN Y, et al. A short-term traffic flow prediction method based on spatial-temporal correlation using edge computing[J]. Computers & Electrical Engineering, 2021, 93: 107219.
    [12] 王兴川, 姚恩建, 刘莎莎. 基于AFC数据的大型活动期间城市轨道交通客流预测[J]. 北京交通大学学报, 2018, 42(1): 87-93.

    WANG X C, YAO E J, LIU S S. Urban rail transit passenger flow forecasting for large special event based on AFC data[J]. Journal of Beijing Jiaotong University, 2018, 42(1): 87-93(in Chinese).
    [13] 郑云霄. 大型活动下城市轨道交通进出站客流短时预测研究[D]. 北京: 北京交通大学, 2019.

    ZHENG Y X. Research on short-term prediction of entry and exit passenger flow of urban rail transit under large-scale activities[D]. Beijing: Beijing Jiaotong University, 2019 (in Chinese).
    [14] RAHMAN R, HASAN S. Short-term traffic speed prediction for freeways during hurricane evacuation: A deep learning approach[C]//2018 21st International Conference on Intelligent Transportation Systems. Piscataway: IEEE Press, 2018.
    [15] NI M, HE Q, GAO J. Using social media to predict traffic flow under special event conditions[C]//93rd Annual Meeting of Transportation Research Board. Washington, D. C. : Federal Highway Administration, 2014.
    [16] KWOCZEK S, DI MARTINO S, NEJDL W. Predicting and visualizing traffic congestion in the presence of planned special events[J]. Journal of Visual Languages & Computing, 2014, 25(6): 973-980.
    [17] POLSON N G, SOKOLOV V O. Deep learning for short-term traffic flow prediction[J]. Transportation Research Part C:Emerging Technologies, 2017, 79: 1-17. doi: 10.1016/j.trc.2017.02.024
    [18] CAI P L, WANG Y P, LU G Q, et al. A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting[J]. Transportation Research Part C:Emerging Technologies, 2016, 62: 21-34. doi: 10.1016/j.trc.2015.11.002
    [19] HABTEMICHAEL F G, CETIN M. Short-term traffic flow rate forecasting based on identifying similar traffic patterns[J]. Transportation Research Part C:Emerging Technologies, 2016, 66: 61-78. doi: 10.1016/j.trc.2015.08.017
    [20] YANG S. On feature selection for traffic congestion prediction[J]. Transportation Research Part C:Emerging Technologies, 2013, 26: 160-169. doi: 10.1016/j.trc.2012.08.005
    [21] LV Y S, DUAN Y J, KANG W W, et al. Traffic flow prediction with big data: A deep learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
    [22] YU H Y, WU Z H, WANG S Q, et al. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017, 17(7): 1501. doi: 10.3390/s17071501
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  48
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-04-11
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答