留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分自编码器的多维退化数据生成方法

林焱辉 李春波

林焱辉,李春波. 基于变分自编码器的多维退化数据生成方法[J]. 北京航空航天大学学报,2023,49(10):2617-2627 doi: 10.13700/j.bh.1001-5965.2021.0760
引用本文: 林焱辉,李春波. 基于变分自编码器的多维退化数据生成方法[J]. 北京航空航天大学学报,2023,49(10):2617-2627 doi: 10.13700/j.bh.1001-5965.2021.0760
LIN Y H,LI C B. Multidimensional degradation data generation method based on variational autoencoder[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2617-2627 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0760
Citation: LIN Y H,LI C B. Multidimensional degradation data generation method based on variational autoencoder[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2617-2627 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0760

基于变分自编码器的多维退化数据生成方法

doi: 10.13700/j.bh.1001-5965.2021.0760
基金项目: 国家自然科学基金(51875016)
详细信息
    通讯作者:

    E-mail: linyanhui@buaa.edu.cn

  • 中图分类号: V19;TP802+.1

Multidimensional degradation data generation method based on variational autoencoder

Funds: National Natural Science Foundation of China (51875016)
More Information
  • 摘要:

    数据驱动的剩余使用寿命(RUL)预测方法不依赖于复杂的物理模型,可以直接利用设备历史运行数据与当前监测数据对设备RUL进行预测,对制定合理的维修策略,降低设备的维护成本具有重要意义。但是数据驱动的RUL预测方法依赖于大量历史数据,在数据不足时,尤其是多维退化数据,模型难以取得良好的预测效果。针对这一问题,提出一种多维退化数据生成方法,所提方法构建了一种全局优化模型,以条件变分自编码器作为生成模型,提取多维退化数据特征并生成相似数据扩充RUL预测模型训练集,利用长短时记忆网络作为RUL预测模型,所提方法能够通过RUL预测模型更新生成模型的参数提高模型的效果,同时利用更新后的生成模型提高剩余寿命预测模型在退化数据不足情况下的效果。使用航空发动机退化数据进行了案例验证,通过对比未加入生成数据训练得到的RUL预测模型与加入生成数据训练得到的RUL预测模型的表现,验证了所提方法在解决RUL预测模型训练数据不足方面的优越性。

     

  • 图 1  LSTM网络循环单元结构

    Figure 1.  Structure of LSTM netword recurrent cell

    图 2  VAE的结构

    Figure 2.  Structure of VAE

    图 3  VAE的图模型结构

    Figure 3.  Structure of VAE graphical model

    图 4  CVAE的结构

    Figure 4.  Structure of CVAE

    图 5  整体模型结构

    Figure 5.  The whole model structure

    图 6  滑动窗口算法处理过程

    Figure 6.  Process of sliding time window algorithm

    图 7  LSTM-CVAE的结构

    Figure 7.  Structure of LSTM-CVAE

    图 8  RMSE与评估函数Score

    Figure 8.  RMSE and evaluation function Score

    图 9  全局优化模型生成数据与真实数据

    Figure 9.  Generated data by global optimization model and real data

    图 10  LSTM-VAE生成数据与真实数据

    Figure 10.  Generated data by LSTM-VAE and real data

    图 11  LSTM-FCVAE生成数据与真实数据

    Figure 11.  Generated data by LSTM-FCVAE and real data

    表  1  CMAPSS数据集

    Table  1.   CMAPSS dataset

    数据集
    编号
    故障模式工况类型训练集
    大小
    测试集
    大小
    FD00111100100
    FD00216260259
    FD00321100100
    FD00426248249
    下载: 导出CSV

    表  2  训练集与验证集

    Table  2.   Train dataset and validation dataset

    发动机序号范围训练集发动机序号验证集发动机序号
    1~101, 3, 7, 89
    11~2013, 14, 16, 18, 2019
    21~3023, 25, 2628
    31~4033, 34, 36, 37, 3938
    41~5042, 43, 44, 46, 47, 5045
    51~605154
    61~7060, 62, 63, 6669
    71~8071, 73, 74, 76, 7977
    81~9082, 83, 86, 88, 9087
    91~10093, 95100
    下载: 导出CSV

    表  3  RUL预测模型结构

    Table  3.   Structure of RUL prediction model

    网络层超参数
    LSTM层1输入维度为14,神经元数量为128
    LSTM层2输入维度为128,神经元数量为64
    LSTM层3输入维度为64,神经元数量为32
    全连接层输入维度为32,神经元数量为1,激活函数为${\boldsymbol{\sigma}} $(*)
    下载: 导出CSV

    表  4  LSTM-VAE的结构

    Table  4.   Structure of LSTM-VAE

    网络名称网络层超参数
    编码网络LSTM层1输入维度为14,神经元数量为32,dropout为0.5
    LSTM层2输入维度为32,神经元数量为16,dropout为0.5
    全连接层1输入维度为16,神经元数量为2
    全连接层2输入维度为16,神经元数量为2
    解码网络LSTM层1输入维度为2,神经元数量为16,dropout为0.5
    LSTM层2输入维度为16,神经元数量为32,dropout为0.5
    LSTM层3输入维度为32,神经元数量为14,dropout为0.5
    激活函数激活函数为${\boldsymbol{\sigma}} $(*)
    下载: 导出CSV

    表  5  LSTM-FCVAE的结构

    Table  5.   Structure of LSTM-FCVAE

    网络名称网络层超参数
    编码网络LSTM层1输入维度为14,神经元数量为32,dropout为0.5
    LSTM层2输入维度为32,神经元数量为16,dropout为0.5
    全连接层1输入维度为16,神经元数量为2
    全连接层2输入维度为16,神经元数量为2
    全连接层3输入维度为16,神经元数量为2
    解码网络LSTM层1输入维度为2,神经元数量为16,dropout为0.5
    LSTM层2输入维度为16,神经元数量为32,dropout为0.5
    LSTM层3输入维度为32,神经元数量为14,dropout为0.5
    激活函数激活函数为${\boldsymbol{\sigma}} $(*)
    下载: 导出CSV

    表  6  全局优化模型结构

    Table  6.   Structure of global optimization model

    网络名称网络层超参数
    编码网络LSTM层1输入维度为14,神经元数量为32,dropout为0.5
    LSTM层2输入维度为32,神经元数量为16,dropout为0.5
    全连接层1输入维度为16,神经元数量为2
    全连接层2输入维度为16,神经元数量为2
    解码网络LSTM层1输入维度为2,神经元数量为16,dropout为0.5
    LSTM层2输入维度为16,神经元数量为32,dropout为0.5
    LSTM层3输入维度为32,神经元数量为14,dropout为0.5
    激活函数激活函数为${\boldsymbol{\sigma}} $(*)
    RUL预测模型表3所示RUL预测模型的结构相同
    下载: 导出CSV

    表  7  不同方法的预测结果

    Table  7.   Prediction result with different methods

    训练方式评估指标
    RMSEScore
    全数据集训练6.81662.124
    部分数据集训练7.43979.802
    LSTM-VAE生成数据7.64876.626
    LSTM-FCVAE生成数据7.25674.793
    全局优化模型7.15971.215
    下载: 导出CSV

    表  8  不同方法的训练时间

    Table  8.   Training time with different methods

    训练方式模型训练时间/s
    LSTM-VAE生成数据355.121
    LSTM-FCVAE生成数据444.275
    全局优化模型424.306
    下载: 导出CSV
  • [1] SHEPPARD J W, KAUFMAN M A, WILMER T J. IEEE standards for prognostics and health management[J]. IEEE Aerospace and Electronic Systems Magazine, 2009, 24(9): 34-41.
    [2] DING X X, HE Q B. Energy-fluctuated multiscale feature learning with deep ConvNet for intelligent spindle bearing fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(8): 1926-1935. doi: 10.1109/TIM.2017.2674738
    [3] SUN C, MA M, ZHAO Z B, et al. Deep transfer learning based on sparse autoencoder for remaining useful life prediction of tool in manufacturing[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4): 2416-2425. doi: 10.1109/TII.2018.2881543
    [4] BROWN E R, MCCOLLOM N N, MOORE E E, et al. Prognostics and health management A data-driven approach to supporting the F-35 lightning II[C]// 2007 IEEE Aerospace Conference. Piscataway: IEEE Press, 2007: 1-12.
    [5] ZHANG L W, LIN J, LIU B, et al. A review on deep learning applications in prognostics and health management[J]. IEEE Access, 2019, 7: 162415-162438. doi: 10.1109/ACCESS.2019.2950985
    [6] ZHAO R, YAN R Q, WANG J J, et al. Learning to monitor machine health with convolutional Bi-directional LSTM networks[J]. Sensors, 2017, 17(2): 273. doi: 10.3390/s17020273
    [7] REN L, ZHAO L, HONG S, et al. Remaining useful life prediction for lithium-ion battery: A deep learning approach[J]. IEEE Access, 2018, 6: 50587-50598. doi: 10.1109/ACCESS.2018.2858856
    [8] ZHANG Y Z, XIONG R, HE H W, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7): 5695-5705. doi: 10.1109/TVT.2018.2805189
    [9] ZHANG J J, WANG P, YAN R Q, et al. Long short-term memory for machine remaining life prediction[J]. Journal of Manufacturing Systems, 2018, 48: 78-86. doi: 10.1016/j.jmsy.2018.05.011
    [10] MA J A, SU H A, ZHAO W L, et al. Predicting the remaining useful life of an aircraft engine using a stacked sparse autoencoder with multilayer self-learning[J]. Complexity, 2018, 2018: 1-13.
    [11] REN L, CHENG X J, WANG X K, et al. Multi-scale dense gate recurrent unit networks for bearing remaining useful life prediction[J]. Future Generation Computer Systems, 2019, 94: 601-609. doi: 10.1016/j.future.2018.12.009
    [12] AJIBOYE A R, ABDULLAH-ARSHAH R, QIN H, et al. Evaluating the effect of dataset size on predictive model using supervised learning technique[J]. International Journal of Computer Systems & Software Engineering, 2015, 1(1): 75-84.
    [13] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//International Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2014.
    [14] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. (2022-12-10) [2021-12-16]. https://arxiv.org/abs/1312.6114
    [15] WANG Z R, WANG J, WANG Y R. An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition[J]. Neurocomputing, 2018, 310: 213-222. doi: 10.1016/j.neucom.2018.05.024
    [16] WANG Y R, SUN G D, JIN Q. Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network[J]. Applied Soft Computing, 2020, 92: 106333. doi: 10.1016/j.asoc.2020.106333
    [17] BEHERA S, MISRA R. Generative adversarial networks based remaining useful life estimation for IIoT[J]. Computers & Electrical Engineering, 2021, 92: 107195.
    [18] 张晟斐, 李天梅, 胡昌华, 等. 基于深度卷积生成对抗网络的缺失数据生成方法及其在剩余寿命预测中的应用[J]. 航空学报, 2022, 43(8): 225708.

    ZHANG S F, LI T M, HU C H, et al. Missing data generation method and its application in remaining useful life prediction based on deep convolutional generative adversarial network[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(8): 225708(in Chinese).
    [19] LEE H, HAN S Y, PARK K J. Generative adversarial network-based missing data handling and remaining useful life estimation for smart train control and monitoring systems[J]. Journal of Advanced Transportation, 2020, 2020: 1-15.
    [20] HUANG Y, TANG Y F, VANZWIETEN J. Prognostics with variational autoencoder by generative adversarial learning[J]. IEEE Transactions on Industrial Electronics, 2022, 69(1): 856-867. doi: 10.1109/TIE.2021.3053882
    [21] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [22] KINGMA D P, WELLING M. An introduction to variational autoencoders[EB/OL]. (2019-12-11) [2021-12-16]. https://arxiv.org/abs/1906.02691
    [23] CARL D. Tutorial on variational autoencoders[EB/OL]. (2021-01-03) [2021-12-16]. https://arxiv.org/abs/1606.05908
    [24] SAXENA A, GOEBEL K, SIMON D, et al. Damage propagation modeling for aircraft engine Run-to-failure simulation[C]// 2008 International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2008: 1-9.
    [25] HUANG C G, HUANG H Z, LI Y F. A bidirectional LSTM prognostics method under multiple operational conditions[J]. IEEE Transactions on Industrial Electronics, 2019, 66(11): 8792-8802. doi: 10.1109/TIE.2019.2891463
    [26] KIM M, LIU K B. A Bayesian deep learning framework for interval estimation of remaining useful life in complex systems by incorporating general degradation characteristics[J]. IISE Transactions, 2021, 53(3): 326-340. doi: 10.1080/24725854.2020.1766729
    [27] ZHANG J J, WANG P, YAN R Q, et al. Deep learning for improved system remaining life prediction[J]. Procedia CIRP, 2018, 72: 1033-1038. doi: 10.1016/j.procir.2018.03.262
    [28] ZHENG S, RISTOVSKI K, FARAHAT A, et al. Long short-term memory network for remaining useful life estimation[C]// 2017 IEEE International Conference on Prognostics and Health Management. Piscataway: IEEE Press, 2017: 88-95.
    [29] WEN L, DONG Y, GAO L A. A new ensemble residual convolutional neural network for remaining useful life estimation[J]. Mathematical Biosciences and Engineering, 2019, 16(2): 862-880. doi: 10.3934/mbe.2019040
  • 加载中
图(11) / 表(8)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  74
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-05-07
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答