留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

惯性行人导航零速区间检测的非线性空间K-means聚类算法

马宇峰 戴邵武 王瑞 戴洪德 郑百东

马宇峰,戴邵武,王瑞,等. 惯性行人导航零速区间检测的非线性空间K-means聚类算法[J]. 北京航空航天大学学报,2023,49(10):2841-2850 doi: 10.13700/j.bh.1001-5965.2021.0764
引用本文: 马宇峰,戴邵武,王瑞,等. 惯性行人导航零速区间检测的非线性空间K-means聚类算法[J]. 北京航空航天大学学报,2023,49(10):2841-2850 doi: 10.13700/j.bh.1001-5965.2021.0764
MA Y F,DAI S W,WANG R,et al. Nonlinear spatial K-means clustering algorithm for detection of zero-speed interval in inertial pedestrian navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2841-2850 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0764
Citation: MA Y F,DAI S W,WANG R,et al. Nonlinear spatial K-means clustering algorithm for detection of zero-speed interval in inertial pedestrian navigation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2841-2850 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0764

惯性行人导航零速区间检测的非线性空间K-means聚类算法

doi: 10.13700/j.bh.1001-5965.2021.0764
基金项目: 山东省自然科学基金(ZR2017MF036);山东省高等学校青年创新团队发展计划(2020KJN003)
详细信息
    通讯作者:

    E-mail:13954559561@126.com

  • 中图分类号: V241.62

Nonlinear spatial K-means clustering algorithm for detection of zero-speed interval in inertial pedestrian navigation

Funds: Shandong Provincial Natural Science Foundation (ZR2017MF036); Development Plan of Young Innovation Team of Colleges and Universities in Shandong Province (2020KJN003)
More Information
  • 摘要:

    惯性行人导航系统中,零速区间检测的准确性直接关系着基于零速修正(ZUPT)的行人导航精度。为此,设计了一种基于非线性空间映射与K-means聚类算法结合的零速区间检测算法。通过经典零速区间检测算法广义似然比检测(GLRT)确定初始零速区间;选取零速区间与非零速区间交界处的加速度数据,将合加速度幅值作为变量,映射到设计的非线性空间中,放大数据差异;利用K-means聚类算法对映射后的数据进行聚类,经过去噪声处理后确定出更精准的零速区间;通过惯性行人导航系统实验验证非线性空间K-means聚类零速区间检测算法的有效性。实验表明,所提出的惯性行人导航零速区间检测的非线性空间K-means聚类算法相比于GLRT算法和基于K-means聚类的零速区间检测算法,定位精度显著提高,并在匀速行走、变速行走和长距离长航时行走3种运动模式下进行了实验验证;相比基于K-means聚类的零速区间检测算法,减小了计算量。所提算法能够自适应不同的运动状态,无需随时调整阈值,且理论上可以优化任意传统零速区间检测算法,具有良好的工程应用价值。

     

  • 图 1  步态周期

    Figure 1.  Gait cycle

    图 2  非线性函数图像与导数图像

    Figure 2.  Non-linear function image and derivative image

    图 3  行走情况下的合加速度幅值和非线性空间映射变化曲线

    Figure 3.  Acceleration amplitude and nonlinear spatial mapping in case of walking

    图 4  慢跑情况下的合加速度幅值和非线性空间映射变化曲线

    Figure 4.  Acceleration amplitude and nonlinear spatial mapping in case of jogging

    图 5  优化算法流程

    Figure 5.  Flow chart of optimization algorithm

    图 6  MIMU惯性传感器安装位置及行人导航系统构成

    Figure 6.  Installation position of MIMU inertial sensor and composition of pedestrian navigation system

    图 7  实验路径对比

    Figure 7.  Experimental path comparison

    图 8  实验路线

    Figure 8.  Experimental roadmap

    图 9  匀速行走状态下实验路径对比

    Figure 9.  Path comparison of experiments under constant speed walking

    图 10  变速行走状态下实验路径对比

    Figure 10.  Path comparison of experiments in mixed motion state

    图 11  400 m跑道卫星图

    Figure 11.  Satellite map of 400 m runway

    图 12  长距离长航时运动状态下的实验的路径对比

    Figure 12.  Path comparison of experiments under long-distance and long endurance motion

    表  1  不同算法平均DVI指数

    Table  1.   Average DVI indexs of different algorithms

    序号一般的K-means
    聚类算法
    非线性空间的
    K-means聚类算法
    10.25940.8157
    20.27280.5789
    30.30800.5340
    40.30440.5387
    50.26050.5319
    下载: 导出CSV

    表  2  3种算法运行时间结果

    Table  2.   Runtime results of three kinds of algorithms

    序号T1/sT2/sT3/s
    1143.7815.293298.862
    2 46.6233.998100.997
    3125.1385.521247.865
    4125.8627.401254.176
    下载: 导出CSV

    表  3  匀速行走状态下3种算法位置误差与导航轨迹误差

    Table  3.   Position error and navigation track error of three kinds of algorithm in uniform walking state m

    算法参考点坐标对应点坐标$\Delta r$$\Delta R$$\Delta S$
    算法1(0,5.5)(0.31,5.07)0.531.590.58
    (11,5.5)(11.05,3.94)1.56
    (11,−11)(9.17,−11.94)2.05
    (−29.32,−11)(−30.27,−11.02)0.95
    (−29.32,5.5)(−31.08,4.95)1.84
    (−18.32,5.5)(−20.40,5.11)2.12
    (−18.32,0)(−20.47,−0.07)2.08
    算法2(0,5.5)(0.24,5.27)0.332.070.99
    (11,5.5)(11.05,3.93)1.57
    (11,−11)(9.16,−12.09)2.14
    (−29.32,−11)(−30.30,−11.87)1.31
    (−29.32,5.5)(−32.03,3.70)3.25
    (−18.32,5.5)(−21.15,4.22)3.11
    (−18.32,0)(−21.03,−0.68)2.79
    算法3(0,5.5)(0.34,4.92)0.671.970.73
    (11,5.5)(10.52,3.73)1.83
    (11,−11)(9.01,−12.26)2.36
    (−29.32,−11)(−30.32,−11.61)1.17
    (−29.32,5.5)(−31.69,4.09)2.76
    (−18.32,5.5)(−20.83,4.81)2.60
    (−18.32,0)(−20.73,−0.42)2.45
    下载: 导出CSV

    表  4  3种算法位置误差与导航轨迹误差

    Table  4.   Position error and navigation track error of three kinds of algorithm m

    算法参考点坐标对应点坐标$\Delta r$$\Delta R$$\Delta S$
    算法1(0,5.5)(0.31,5.07)1.001.730.63
    (11,5.5)(11.05,3.94)2.30
    (11,−11)(9.17,−11.94)2.87
    (−29.32,−11)(−30.27,−11.02)1.74
    (−29.32,5.5)(−31.08,4.95)1.18
    (−18.32,5.5)(−20.40,5.11)1.16
    (−18.32,0)(−20.47,−0.07)1.85
    算法2(0,5.5)(0.24,5.27)1.352.771.03
    (11,5.5)(11.05,3.93)3.57
    (11,−11)(9.16,−12.09)4.34
    (−29.32,−11)(−30.30,−11.87)3.66
    (−29.32,5.5)(−32.03,3.70)2.45
    (−18.32,5.5)(−21.15,4.22)1.63
    (−18.32,0)(−21.03,−0.68)2.42
    算法3(0,5.5)(0.34,4.92)1.061.890.71
    (11,5.5)(10.52,3.73)2.54
    (11,−11)(9.01,−12.26)3.29
    (−29.32,−11)(−30.32,−11.61)1.69
    (−29.32,5.5)(−31.69,4.09)1.34
    (−18.32,5.5)(−20.83,4.81)1.53
    (−18.32,0)(−20.73,−0.42)1.80
    下载: 导出CSV
  • [1] 裴凌, 刘东辉, 钱久超. 室内定位技术与应用综述[J]. 导航定位与授时, 2017, 4(18): 1-10. doi: 10.19306/j.cnki.2095-8110.2017.03.001

    PEI L, LIU D H, QIAN J C. A survey of indoor positioning technology and application[J]. Navigation Positioning and Timing, 2017, 4(18): 1-10(in Chinese). doi: 10.19306/j.cnki.2095-8110.2017.03.001
    [2] MINNE K, MACOIR N, ROSSEY J, et al. Experimental evaluation of UWB indoor positioning for indoor track cycling[J]. Sensors, 2019, 19(9): 2041. doi: 10.3390/s19092041
    [3] XU H, DING Y, LI P, et al. An RFID indoor positioning algorithm based on Bayesian probability and K-nearest neighbor[J]. Sensors, 2017, 17(8): 1806. doi: 10.3390/s17081806
    [4] LIU F, LIU J, YIN Y, et al. Survey on WiFi-based indoor positioning techniques[J]. IET Communications, 2020, 14(9): 1372-1383. doi: 10.1049/iet-com.2019.1059
    [5] OU C W, CHAO C J, CHANG F S, et al. A ZigBee position technique for indoor localization based on proximity learning[C]//Proceedings of the 2017 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Press, 2017: 875-880.
    [6] 潘献飞, 穆华, 胡小平. 单兵自主导航技术发展综述[J]. 导航定位与授时, 2018, 5(1): 1-11. doi: 10.19306/j.cnki.2095-8110.2018.01.001

    PAN X F, MU H, HU X P. A survey of the development of autonomous navigation technology for individual soldier[J]. Navigation Positioning and Timing, 2018, 5(1): 1-11(in Chinese). doi: 10.19306/j.cnki.2095-8110.2018.01.001
    [7] ELWELL J. Inertial navigation for the urban warrior[C]//Proceedings of the Society of Photo-Optical Instrumentation Engineers. Bellingham: SPIE, 1999, 3709: 196-204.
    [8] MA M, SONG Q, GU Y, et al. An adaptive zero velocity detection algorithm based on multi-sensor fusion for a pedestrian navigation system[J]. Sensors, 2018, 18(10): 3261. doi: 10.3390/s18103261
    [9] WANG Y S, SHKEL A M. Adaptive threshold for zero-velocity detector in ZUPT-aided pedestrian inertial navigation[J]. IEEE Sensors Letters, 2019, 3(11): 1-4.
    [10] 王凯龙. GNSS和IMU的室内外行人无缝导航方法研究[D]. 南昌: 南昌大学, 2018.

    WANG K L. The method research of indoor and outdoor pedestrians seamless navigation based on GNSS and IMU[D]. Nanchang: Nanchang University, 2018(in Chinese).
    [11] SUN W, DING W, YAN H F, et al. Zero velocity interval detection based on a continuous hidden Markov model in micro inertial pedestrian navigation[J]. Measurement Science and Technology, 2018, 29(6): 065103. doi: 10.1088/1361-6501/aab59d
    [12] 戴洪德, 李松林, 周绍磊, 等. 基于伪标准差和N-P准则的行人导航零速检测[J]. 中国惯性技术学报, 2018, 26(6): 701-707. doi: 10.13695/j.cnki.12-1222/o3.2018.06.001

    DAI H D, LI S L, ZHOU S L, et al. Pedestrian navigation zero-velocity detection based on pseudo-standard deviation and N-P criterion[J]. Journal of Chinese Inertial Technology, 2018, 26(6): 701-707(in Chinese). doi: 10.13695/j.cnki.12-1222/o3.2018.06.001
    [13] WAGSTAFF B, KELLY J. LSTM-based zero-velocity detection for robust inertial navigation[C]//Proceedings of the 2018 International Conference on Indoor Positioning and Indoor Navigation. Piscataway: IEEE Press, 2018: 1-8.
    [14] SKOG I, HANDEL P, NILSSON J O, et al. Zero-velocity detection—An algorithm evaluation.[J]. IEEE Transactions on Biomedical Engineering, 2010, 57(11): 2657-2666. doi: 10.1109/TBME.2010.2060723
    [15] WAHLSTRÖM J, SKOG I, GUSTAFSSON F, et al. Zero-velocity detection—A Bayesian approach to adaptive thresholding[J]. IEEE Sensors Letters, 2019, 3(6): 1-4.
    [16] 孙伟, 宋如意, 丁伟. 步态特征提取的K均值聚类自适应判别[J]. 测绘科学, 2019, 44(12): 29-34. doi: 10.16251/j.cnki.1009-2307.2019.12.005

    SUN W, SONG R Y, DING W. Adaptive gait features discrimination based on K means clustering[J]. Science of Surveying and Mapping, 2019, 44(12): 29-34(in Chinese). doi: 10.16251/j.cnki.1009-2307.2019.12.005
    [17] LI Y, WANG J J. A pedestrian navigation system based on low cost IMU[J]. Journal of Navigation, 2014, 67(6): 929-949. doi: 10.1017/S0373463314000344
    [18] WANG Z L, ZHAO H Y, QIU S, et al. Stance-phase detection for ZUPT-aided foot-mounted pedestrian navigation system[J]. IEEE-ASME Transactions on Mechatronics, 2015, 20(6): 3170-3181. doi: 10.1109/TMECH.2015.2430357
    [19] FAHAD A, ALSHATRI N, TARI Z, et al. A survey of clustering algorithms for big data: Taxonomy and empirical analysis[J]. IEEE Transactions on Emerging Topics in Computing, 2014, 2(3): 267-279. doi: 10.1109/TETC.2014.2330519
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  637
  • HTML全文浏览量:  63
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-16
  • 录用日期:  2022-03-20
  • 网络出版日期:  2022-05-10
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答