留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可靠性真值表的JTC补偿电容重要性评估

武晓春 洪玲

武晓春,洪玲. 基于可靠性真值表的JTC补偿电容重要性评估[J]. 北京航空航天大学学报,2023,49(10):2579-2586 doi: 10.13700/j.bh.1001-5965.2021.0767
引用本文: 武晓春,洪玲. 基于可靠性真值表的JTC补偿电容重要性评估[J]. 北京航空航天大学学报,2023,49(10):2579-2586 doi: 10.13700/j.bh.1001-5965.2021.0767
WU X C,HONG L. Importance evaluation of JTC compensation capacitor based on reliability truth table[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2579-2586 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0767
Citation: WU X C,HONG L. Importance evaluation of JTC compensation capacitor based on reliability truth table[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2579-2586 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0767

基于可靠性真值表的JTC补偿电容重要性评估

doi: 10.13700/j.bh.1001-5965.2021.0767
基金项目: 国家自然科学基金(61661027)
详细信息
    通讯作者:

    E-mail:369038806@qq.com

  • 中图分类号: U284.2

Importance evaluation of JTC compensation capacitor based on reliability truth table

Funds: National Natural Science Foundation of China (61661027)
More Information
  • 摘要:

    为实现不同位置补偿电容的重要性评估,得到对无绝缘轨道电路(JTC)影响较大的补偿电容位置,提出一种基于可靠性真值表的JTC补偿电容重要性评估方法。建立JTC调整态和分路态模型,并仿真得到补偿电容断线时全部故障类型的调整态接收电压和分路态分路电流幅值曲线;提取相应的接收电压和最小分路电流与其阈值进行对比分析,建立JTC可靠性真值表;基于可靠性真值表计算各补偿电容的重要度系数,并通过柱形图确定对JTC影响较大的补偿电容位置。结果表明:靠近接收端的第2个和第3个补偿电容对JTC的影响较大。所提方法可协助现场维修人员确定各补偿电容的维护优先级,为补偿电容的重点监测提供依据。

     

  • 图 1  JTC系统基本结构

    Figure 1.  Basic structure of JTC system

    图 2  调整态模型

    Figure 2.  Adjustment state model

    图 3  分路态模型

    Figure 3.  Shunt state model

    图 4  补偿电容不同断线故障类型下对应的最小分路电流和接收电压

    Figure 4.  Minimun shunt current and receiving voltage corresponding to different disconnection fault types of compensation capacitors

    图 5  补偿电容重要性评估流程

    Figure 5.  Flow chart of importance evaluation of compensation capacitance

    图 6  各补偿电容重要度系数

    Figure 6.  Importance coefficient of each compensation capacitor

    图 7  道床电阻为1.7 Ω·km时各补偿电容重要度系数

    Figure 7.  Importance coefficient of each compensation capacitance when ballast bed resistance is 1.7 Ω· km

    图 8  道床电阻为2.3 Ω·km时各补偿电容重要度系数

    Figure 8.  Importance coefficient of each compensation capacitance when ballast bed resistance is 2.3 Ω· km

    表  1  部分JTC可靠性真值表

    Table  1.   Partial JTC reliability truth table

    D(i)含义ATZ(i)/VAFLmin(i)/AS(i)含义
    0000000000补偿电容全部正常0.43220.79200正常
    0000000001C10故障0.38100.67540正常
    0000000100C8故障0.37020.75710正常
    0001000000C4故障0.33020.67250正常
    0010000000C3故障0.35200.60870正常
    1000000000C1故障0.38850.63970正常
    0000001100C7,C8故障0.26410.54870正常
    0000010001C6,C10故障0.34960.49680正常
    0000110000C5,C6故障0.36360.49370正常
    0001100000C4,C5故障0.31880.48740正常
    0010001000C3,C7故障0.26880.47690正常
    0011000000C3,C4故障0.26310.44751失效
    0100000001C2,C10故障0.44880.45860正常
    0110000000C2,C3故障0.45150.40441失效
    1000010000C1,C6故障0.42600.52260正常
    1100000000C1,C2故障0.38910.44711失效
    0000000111C8,C9,C10故障0.29830.46220正常
    0000011001C6,C7,C10故障0.28730.44331失效
    0010000011C5,C7,C8故障0.35470.60940正常
    0000011100C6,C7,C8故障0.27200.40731失效
    0010001001C3,C7,C10故障0.27210.46800正常
    0010001100C3,C7,C8故障0.21560.36441失效
    0100000011C2,C9,C10故障0.39880.38551失效
    0100110000C2,C5,C6故障0.45670.41651失效
    0110001010C2,C3,C7,C9故障0.39180.33891失效
    1000000111C1,C8,C9,C10故障0.18800.36861失效
    0101101100C2,C4,C5,C7,C8故障0.35460.51550正常
    1111111111补偿电容全部故障0.10700.11431失效
    下载: 导出CSV
  • [1] 柴荣华, 武晓春. 基于MEEMD-HT的无绝缘轨道电路补偿电容故障特征分析[J]. 铁道标准设计, 2020, 64(3): 160-165. doi: 10.13238/j.issn.1004-2954.201903130005

    CHAI R H, WU X C. Characteristic analysis of compensation capacitor fault of jointless track circuit based on MEEMD-HT[J]. Railway Standard Design, 2020, 64(3): 160-165(in Chinese). doi: 10.13238/j.issn.1004-2954.201903130005
    [2] 孙浩洋, 刘伯鸿. 基于隐半马尔可夫模型的补偿电容维修机制优化[J]. 空军工程大学学报(自然科学版), 2020, 21(1): 21-26.

    SUN H Y, LIU B H. Optimization of compensation capacitor maintenance based on hidden semi-Markov model[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(1): 21-26(in Chinese).
    [3] ZHANG B, MA W J, CHANG G W. Diagnosis approach on compensation capacitor fault of jointless track circuit based on simulated annealing algorithm[J]. Advances in Computer Communication and Computational Sciences, 2019, 759: 417-426.
    [4] 吴蒙. 无绝缘轨道电路补偿电容状态实时监测的研究[D]. 北京: 北京交通大学, 2016: 4-6.

    WU M. Research on real-time monitoring of compensation capacitor in jointless track circuit[D]. Beijing: Beijing Jiaotong University, 2016: 4-6(in Chinese).
    [5] 孙哲, 赵林海. 基于云理论的JTC可靠性实时评估方法[J]. 铁道学报, 2019, 41(2): 89-96. doi: 10.3969/j.issn.1001-8360.2019.02.013

    SUN Z, ZHAO L H. Reliability real-time evaluation of JTC based on cloud theory[J]. Journal of the China Railway Society, 2019, 41(2): 89-96(in Chinese). doi: 10.3969/j.issn.1001-8360.2019.02.013
    [6] GUO Z J, WAN Y M, YE H. An unsupervised fault-detection method for railway turnouts[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8881-8901. doi: 10.1109/TIM.2020.2998863
    [7] XIN T Y, ROBERTS C, WESTON P, et al. Condition monitoring of railway pantographs to achieve fault detection and fault diagnosis[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2020, 234(3): 289-300. doi: 10.1177/0954409718800567
    [8] 李新琴, 张鹏翔, 史天运, 等. 基于深度学习集成的高速铁路信号设备故障诊断方法[J]. 铁道学报, 2020, 42(12): 97-105. doi: 10.3969/j.issn.1001-8360.2020.12.013

    LI X Q, ZHANG P X, SHI T Y, et al. Research on fault diagnosis method for high-speed railway signal equipment based on deep learning integration[J]. Journal of the China Railway Society, 2020, 42(12): 97-105(in Chinese). doi: 10.3969/j.issn.1001-8360.2020.12.013
    [9] ZHAO L H, MAGGIE G Y, KLEIN B D. Analysis of structure importance of compensation capacitor in jointless track circuit[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2017, 231(3): 329-344. doi: 10.1177/0954409716630338
    [10] 李文涛. 高速铁路列车运行控制技术——ZPW-2000系列无绝缘轨道电路系统[M]. 北京: 中国铁道出版社, 2017: 4-119.

    LI W T. Train operation control technology of high-speed railway—ZPW-2000 series jointless track circuit system[M]. Beijing: China Railway Publishing House, 2017: 4-119(in Chinese).
    [11] 冯栋, 赵林海. 基于机车信号远程监测系统的分路电阻在线估算方法[J]. 铁道学报, 2017, 39(4): 62-67. doi: 10.3969/j.issn.1001-8360.2017.04.009

    FENG D, ZHAO L H. Online estimation method of shunt resistance based on cab-signal remote monitoring system[J]. Journal of the China Railway Society, 2017, 39(4): 62-67(in Chinese). doi: 10.3969/j.issn.1001-8360.2017.04.009
    [12] YANG W D, ZHANG J L, GU G X. Parameter estimation and fault diagnosis for compensation capacitators in ZPW-2000 jointless track circuit[C]//Proceedings of the CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes. Piscataway: IEEE Press, 2019: 675-681.
    [13] 田粉霞. 基于深度学习的无绝缘轨道电路故障诊断[D]. 北京: 北京交通大学, 2020: 13-19.

    TIAN F X. Fault diagnosis of jointless track circuit based on deep learning[D]. Beijing: Beijing Jiaotong University, 2020: 13-19(in Chinese).
    [14] ZHENG Z Y, DAI S H, XIE X X. Research on fault detection for ZPW-2000A jointless track circuit based on deep belief network optimized by improved particle swarm optimization algorithm[J]. IEEE Access, 2020, 8: 175981-175997. doi: 10.1109/ACCESS.2020.3025628
    [15] 洪玲, 武晓春. 基于小波包的无绝缘轨道电路补偿电容故障特征分析[J]. 铁道科学与工程学报, 2022, 19(4): 1111-1120.

    HONG L, WU X C. Analysis of compensation capacitor fault characteristics of jointless track circuit based on wavelet packet[J]. Journal of Railway Science and Engineering, 2022, 19(4): 1111-1120(in Chinese).
    [16] 柴荣华. 基于粒子滤波算法的JTC补偿电容故障预测的研究[D]. 兰州: 兰州交通大学, 2020: 14-15.

    CHAI R H. Research on fault prediction of compensation capacitor for JTC based on particle filter algorithm[D]. Lanzhou: Lanzhou Jiaotong University, 2020: 14-15(in Chinese).
    [17] ZHANG W Y, ZHANG B G, XU L M, et al. Modelling and fault diagnosis of railroad jointless track circuit[J]. Electrotehnica, Electronica, Automatica, 2019, 67(1): 76-82.
    [18] 国家铁路局. ZPW-2000轨道电路技术条件: TB/T 3206—2017[S]. 北京: 中国铁道出版社, 2017.

    National Railway Administration of the People’s Republic of China. Technical specification of ZPW-2000 track circuit: TB/T 3206—2017 [S]. Beijing: China Railway Publishing House, 2017(in Chinese).
    [19] 高建. 浅谈客专ZPW-2000A轨道电路调试方法及常见故障分析[J]. 铁道建筑技术, 2012(12): 74-77. doi: 10.3969/j.issn.1009-4539.2012.12.018

    GAO J. Discussion about debugging method and common faults analysis in ZPW-2000A track circuits of passenger dedicated line[J]. Railway Construction Technology, 2012(12): 74-77(in Chinese). doi: 10.3969/j.issn.1009-4539.2012.12.018
    [20] 北京全路通信信号研究设计院有限公司. 贵广线四线并行有砟路基客专ZPW-2000A轨道电路 (10 km电缆)调整参考表(调试版). V0.0.1[S]. 北京: 中国铁道出版社, 2014.

    Beijing National Railway Research & Design Institute of Signal & Communication Co. , Ltd. Reference table for adjustment of ZPW-2000A track circuit (10 km cable) of four parallel ballasted subgrade of Guiyang Guangzhou railway (commissioning version). V0.0.1[S]. Beijing: China Railway Publishing House, 2014(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  29
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-03-23
  • 网络出版日期:  2022-04-28
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答