Importance evaluation of JTC compensation capacitor based on reliability truth table
-
摘要:
为实现不同位置补偿电容的重要性评估,得到对无绝缘轨道电路(JTC)影响较大的补偿电容位置,提出一种基于可靠性真值表的JTC补偿电容重要性评估方法。建立JTC调整态和分路态模型,并仿真得到补偿电容断线时全部故障类型的调整态接收电压和分路态分路电流幅值曲线;提取相应的接收电压和最小分路电流与其阈值进行对比分析,建立JTC可靠性真值表;基于可靠性真值表计算各补偿电容的重要度系数,并通过柱形图确定对JTC影响较大的补偿电容位置。结果表明:靠近接收端的第2个和第3个补偿电容对JTC的影响较大。所提方法可协助现场维修人员确定各补偿电容的维护优先级,为补偿电容的重点监测提供依据。
Abstract:A method based on a reliability truth table for evaluating the importance of jointless track circuit (JTC) compensation capacitor is developed in order to assess the significance of compensation capacitors at various points of JTC. Firstly, an adjustment state model and a shunt state of the JTC are established, then the received voltage and shunt current amplitude curves of all fault types when compensation capacitors are disconnected in the adjustment state and shunt state are obtained by simulation. Secondly, the corresponding received voltage and minimum shunt current are extracted and compared with their thresholds, so as to establish the JTC reliability truth table. Finally, the reliability truth table is used to calculate the importance coefficient of each compensation capacitor, and the column diagram is used to find the location of the compensation capacitors that have the greatest influence on JTC. The results show that the second and third compensation capacitors near the receiver have a great influence on JTC. This method can assist the field maintenance personnel to determine the maintenance priority of each compensation capacitor and provide the basis for the key monitoring and preventive maintenance of compensation capacitors.
-
表 1 部分JTC可靠性真值表
Table 1. Partial JTC reliability truth table
D(i) 含义 ATZ(i)/V AFLmin(i)/A S(i) 含义 0000000000 补偿电容全部正常 0.4322 0.7920 0 正常 0000000001 C10故障 0.3810 0.6754 0 正常 0000000100 C8故障 0.3702 0.7571 0 正常 0001000000 C4故障 0.3302 0.6725 0 正常 0010000000 C3故障 0.3520 0.6087 0 正常 1000000000 C1故障 0.3885 0.6397 0 正常 0000001100 C7,C8故障 0.2641 0.5487 0 正常 0000010001 C6,C10故障 0.3496 0.4968 0 正常 0000110000 C5,C6故障 0.3636 0.4937 0 正常 0001100000 C4,C5故障 0.3188 0.4874 0 正常 0010001000 C3,C7故障 0.2688 0.4769 0 正常 0011000000 C3,C4故障 0.2631 0.4475 1 失效 0100000001 C2,C10故障 0.4488 0.4586 0 正常 0110000000 C2,C3故障 0.4515 0.4044 1 失效 1000010000 C1,C6故障 0.4260 0.5226 0 正常 1100000000 C1,C2故障 0.3891 0.4471 1 失效 0000000111 C8,C9,C10故障 0.2983 0.4622 0 正常 0000011001 C6,C7,C10故障 0.2873 0.4433 1 失效 0010000011 C5,C7,C8故障 0.3547 0.6094 0 正常 0000011100 C6,C7,C8故障 0.2720 0.4073 1 失效 0010001001 C3,C7,C10故障 0.2721 0.4680 0 正常 0010001100 C3,C7,C8故障 0.2156 0.3644 1 失效 0100000011 C2,C9,C10故障 0.3988 0.3855 1 失效 0100110000 C2,C5,C6故障 0.4567 0.4165 1 失效 0110001010 C2,C3,C7,C9故障 0.3918 0.3389 1 失效 1000000111 C1,C8,C9,C10故障 0.1880 0.3686 1 失效 0101101100 C2,C4,C5,C7,C8故障 0.3546 0.5155 0 正常 1111111111 补偿电容全部故障 0.1070 0.1143 1 失效 -
[1] 柴荣华, 武晓春. 基于MEEMD-HT的无绝缘轨道电路补偿电容故障特征分析[J]. 铁道标准设计, 2020, 64(3): 160-165. doi: 10.13238/j.issn.1004-2954.201903130005CHAI R H, WU X C. Characteristic analysis of compensation capacitor fault of jointless track circuit based on MEEMD-HT[J]. Railway Standard Design, 2020, 64(3): 160-165(in Chinese). doi: 10.13238/j.issn.1004-2954.201903130005 [2] 孙浩洋, 刘伯鸿. 基于隐半马尔可夫模型的补偿电容维修机制优化[J]. 空军工程大学学报(自然科学版), 2020, 21(1): 21-26.SUN H Y, LIU B H. Optimization of compensation capacitor maintenance based on hidden semi-Markov model[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(1): 21-26(in Chinese). [3] ZHANG B, MA W J, CHANG G W. Diagnosis approach on compensation capacitor fault of jointless track circuit based on simulated annealing algorithm[J]. Advances in Computer Communication and Computational Sciences, 2019, 759: 417-426. [4] 吴蒙. 无绝缘轨道电路补偿电容状态实时监测的研究[D]. 北京: 北京交通大学, 2016: 4-6.WU M. Research on real-time monitoring of compensation capacitor in jointless track circuit[D]. Beijing: Beijing Jiaotong University, 2016: 4-6(in Chinese). [5] 孙哲, 赵林海. 基于云理论的JTC可靠性实时评估方法[J]. 铁道学报, 2019, 41(2): 89-96. doi: 10.3969/j.issn.1001-8360.2019.02.013SUN Z, ZHAO L H. Reliability real-time evaluation of JTC based on cloud theory[J]. Journal of the China Railway Society, 2019, 41(2): 89-96(in Chinese). doi: 10.3969/j.issn.1001-8360.2019.02.013 [6] GUO Z J, WAN Y M, YE H. An unsupervised fault-detection method for railway turnouts[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(11): 8881-8901. doi: 10.1109/TIM.2020.2998863 [7] XIN T Y, ROBERTS C, WESTON P, et al. Condition monitoring of railway pantographs to achieve fault detection and fault diagnosis[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2020, 234(3): 289-300. doi: 10.1177/0954409718800567 [8] 李新琴, 张鹏翔, 史天运, 等. 基于深度学习集成的高速铁路信号设备故障诊断方法[J]. 铁道学报, 2020, 42(12): 97-105. doi: 10.3969/j.issn.1001-8360.2020.12.013LI X Q, ZHANG P X, SHI T Y, et al. Research on fault diagnosis method for high-speed railway signal equipment based on deep learning integration[J]. Journal of the China Railway Society, 2020, 42(12): 97-105(in Chinese). doi: 10.3969/j.issn.1001-8360.2020.12.013 [9] ZHAO L H, MAGGIE G Y, KLEIN B D. Analysis of structure importance of compensation capacitor in jointless track circuit[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2017, 231(3): 329-344. doi: 10.1177/0954409716630338 [10] 李文涛. 高速铁路列车运行控制技术——ZPW-2000系列无绝缘轨道电路系统[M]. 北京: 中国铁道出版社, 2017: 4-119.LI W T. Train operation control technology of high-speed railway—ZPW-2000 series jointless track circuit system[M]. Beijing: China Railway Publishing House, 2017: 4-119(in Chinese). [11] 冯栋, 赵林海. 基于机车信号远程监测系统的分路电阻在线估算方法[J]. 铁道学报, 2017, 39(4): 62-67. doi: 10.3969/j.issn.1001-8360.2017.04.009FENG D, ZHAO L H. Online estimation method of shunt resistance based on cab-signal remote monitoring system[J]. Journal of the China Railway Society, 2017, 39(4): 62-67(in Chinese). doi: 10.3969/j.issn.1001-8360.2017.04.009 [12] YANG W D, ZHANG J L, GU G X. Parameter estimation and fault diagnosis for compensation capacitators in ZPW-2000 jointless track circuit[C]//Proceedings of the CAA Symposium on Fault Detection, Supervision and Safety for Technical Processes. Piscataway: IEEE Press, 2019: 675-681. [13] 田粉霞. 基于深度学习的无绝缘轨道电路故障诊断[D]. 北京: 北京交通大学, 2020: 13-19.TIAN F X. Fault diagnosis of jointless track circuit based on deep learning[D]. Beijing: Beijing Jiaotong University, 2020: 13-19(in Chinese). [14] ZHENG Z Y, DAI S H, XIE X X. Research on fault detection for ZPW-2000A jointless track circuit based on deep belief network optimized by improved particle swarm optimization algorithm[J]. IEEE Access, 2020, 8: 175981-175997. doi: 10.1109/ACCESS.2020.3025628 [15] 洪玲, 武晓春. 基于小波包的无绝缘轨道电路补偿电容故障特征分析[J]. 铁道科学与工程学报, 2022, 19(4): 1111-1120.HONG L, WU X C. Analysis of compensation capacitor fault characteristics of jointless track circuit based on wavelet packet[J]. Journal of Railway Science and Engineering, 2022, 19(4): 1111-1120(in Chinese). [16] 柴荣华. 基于粒子滤波算法的JTC补偿电容故障预测的研究[D]. 兰州: 兰州交通大学, 2020: 14-15.CHAI R H. Research on fault prediction of compensation capacitor for JTC based on particle filter algorithm[D]. Lanzhou: Lanzhou Jiaotong University, 2020: 14-15(in Chinese). [17] ZHANG W Y, ZHANG B G, XU L M, et al. Modelling and fault diagnosis of railroad jointless track circuit[J]. Electrotehnica, Electronica, Automatica, 2019, 67(1): 76-82. [18] 国家铁路局. ZPW-2000轨道电路技术条件: TB/T 3206—2017[S]. 北京: 中国铁道出版社, 2017.National Railway Administration of the People’s Republic of China. Technical specification of ZPW-2000 track circuit: TB/T 3206—2017 [S]. Beijing: China Railway Publishing House, 2017(in Chinese). [19] 高建. 浅谈客专ZPW-2000A轨道电路调试方法及常见故障分析[J]. 铁道建筑技术, 2012(12): 74-77. doi: 10.3969/j.issn.1009-4539.2012.12.018GAO J. Discussion about debugging method and common faults analysis in ZPW-2000A track circuits of passenger dedicated line[J]. Railway Construction Technology, 2012(12): 74-77(in Chinese). doi: 10.3969/j.issn.1009-4539.2012.12.018 [20] 北京全路通信信号研究设计院有限公司. 贵广线四线并行有砟路基客专ZPW-2000A轨道电路 (10 km电缆)调整参考表(调试版). V0.0.1[S]. 北京: 中国铁道出版社, 2014.Beijing National Railway Research & Design Institute of Signal & Communication Co. , Ltd. Reference table for adjustment of ZPW-2000A track circuit (10 km cable) of four parallel ballasted subgrade of Guiyang Guangzhou railway (commissioning version). V0.0.1[S]. Beijing: China Railway Publishing House, 2014(in Chinese).