-
摘要:
为解决不规则燃油箱惰化时,出现的氧体积分数分布不均匀、惰化区域不充分的难题,以熵权改进优劣解距离(TOPSIS)理论为基础,提出一种适用于不规则油箱惰化系统的优化方法,并结合数值仿真方法进行综合评价,实现波音747飞机惰化系统进出口的优化设计。结果表明:根据熵权改进TOPSIS理论设计的惰化方案,不仅可以降低惰性气体流量需求,而且可以使得惰化空间氧体积分数分布更为均匀;优化后的波音747飞机惰化方案,综合性能指标提升22.67%,速度性指标提升2.97%,均匀性指标提升27.78%;单侧偏置惰化方案设计思路,可以增加流通路径、延长惰性气体存续时间,使得油箱惰化时氧气分布更为均匀、氧体积分数下降迅速。
Abstract:An optimization method appropriate for the irregular fuel tank inerting system is proposed based on the Entropy-weight improvement TOPSIS method in order to address the issues of uneven oxygen distribution and insufficient inerting when the irregular fuel tank is inserted. When combined with the numerical simulation method, the comprehensive evaluation is carried out, and the optimization design for the Boeing 747 inerting system is then realized. The results show that: The inerting scheme designed by the Entropy-weight improvement TOPSIS method can not only reduce the flow demand of inert gas but also make the oxygen distribution more uniform. The optimization inerting scheme of Boeing 747 aircraft has improved the comprehensive performance metrics by 22.67%, the speed metrics by 2.97%, and the uniformity metrics by 27.78%. The design idea of a “one-side bias placement ” inerting scheme can increase the flow path and prolong the existence time of inert gas so that the oxygen distribution is more uniform and the oxygen concentration decreases rapidly when the fuel tank is inserted.
-
Key words:
- fuel tank inerting /
- inerting system /
- inert gas /
- inerting scheme /
- TOPSIS /
- numerical simulation
-
表 1 各方案的速度性指标
Table 1. Speed metrics of each scheme
s 方案 Bay1 Bay2 Bay3 Bay4 Bay5 Bay6 原方案 1289.8 669.2 115.7 348.9 690.6 738.6 1 1220.9 580.6 743.3 900.5 298.5 790.2 2 1168.4 509.5 226.9 678.8 835.8 964.4 3 997.9 718.6 427.1 700.7 149.7 396.8 4 1275.2 675.3 413.9 698.3 150.4 406.1 5 1413.4 839.6 406.0 535.3 151.1 393.1 表 2 各方案的均匀性指标
Table 2. Uniformity metrics of each scheme
10−3 方案 Bay1 Bay2 Bay3 Bay4 Bay5 Bay6 原方案 5.106 5.302 0.005 0.725 4.975 3.319 1 4.621 4.620 5.380 3.515 1.001 9.010 2 6.964 3.714 0.338 7.169 6.390 4.772 3 2.601 6.687 1.113 3.336 0.025 1.628 4 5.324 5.164 0.918 3.492 0.029 1.641 5 4.763 5.443 0.830 1.659 0.028 1.310 表 3 各项指标的熵值与熵权
Table 3. Entropy value and entropy weight of each metric
指标 熵值Ej 熵权Wj Bay1速度性 0.997 0.002 Bay2速度性 0.993 0.005 Bay3速度性 0.928 0.053 Bay4速度性 0.979 0.015 Bay5速度性 0.857 0.104 Bay6速度性 0.962 0.027 Bay1均匀性 0.980 0.015 Bay2均匀性 0.992 0.006 Bay3均匀性 0.644 0.258 Bay4均匀性 0.897 0.075 Bay5均匀性 0.531 0.340 Bay6均匀性 0.862 0.100 表 4 综合评价结果
Table 4. Comprehensive evaluation results
方案 $D_{i^+} $ $D_{i^-} $ Mi 排名 原方案 0.265 0.213 0.445 4 1 0.232 0.262 0.531 5 2 0.235 0.280 0.543 6 3 0.344 0.057 0.142 3 4 0.348 0.050 0.125 2 5 0.353 0.041 0.104 1 表 5 各性能指标提升效果
Table 5. Improvement effect of each performance metrics
方案 提升率/% 速度性指标 均匀性指标 综合性能指标 1 −17.68 −44.85 −39.25 2 −13.78 −51.02 −43.35 3 11.99 20.80 18.99 4 6.06 14.74 12.95 5 2.97 27.78 22.67 -
[1] 冯诗愚, 任童, 谢辉辉, 等. 耗氧型惰化反应器起燃特性[J]. 航空学报, 2021, 42(3): 124182.FENG S Y, REN T, XIE H H, et al. Light-off characteristics of oxygen-consuming inerting reactor[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124182(in Chinese). [2] CAVAGE W. Modeling inert gas distribution in commercial transport aircraft fuel tanks[C]//Proceedings of the 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002. [3] CAVAGE W, BOWMAN T. Modeling In-flight inert gas distribution in a 747 center wing fuel tank[C]//Proceedings of the 35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005. [4] CAVAGE W M. Modeling of In-flight fuel tank inerting for FAA OBIGGS research[C]//4th Triennial Fire and Cabin Safety Research Conference. Washington, D. C.: FAA, 2004. [5] 冯晨曦, 刘卫华, 鹿世化, 等. 气体分配方式对多隔仓燃油箱地面惰化的影响[J]. 航空动力学报, 2011, 26(11): 2528-2533.FENG C X, LIU W H, LU S H, et al. Study on ground-based inerting process influenced by different gas distribution for multi-bay fuel tank[J]. Journal of Aerospace Power, 2011, 26(11): 2528-2533(in Chinese). [6] 鹿世化. 油箱惰化空间浓度场模拟和气流优化的理论与实验研究[D]. 南京: 南京航空航天大学, 2012.LU S H. Numerical simulation of oxygen distribution in aircraft fuel tank ullage and theoretical and experimental study of airflow optimization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). [7] TAVANA M, HATAMI-MARBINI A. A group AHP-TOPSIS framework for human spaceflight mission planning at NASA[J]. Expert Systems With Applications, 2011, 38(11): 13588-13603. [8] CHAUHAN R, SINGH T, TIWARI A, et al. Hybrid entropy - TOPSIS approach for energy performance prioritization in a rectangular channel employing impinging air jets[J]. Energy, 2017, 134: 360-368. doi: 10.1016/j.energy.2017.06.021 [9] KUMAR C, RANA K B, TRIPATHI B. Performance evaluation of diesel-additives ternary fuel blends: An experimental investigation, numerical simulation using hybrid Entropy-TOPSIS method and economic analysis[J]. Thermal Science and Engineering Progress, 2020, 20: 100675. doi: 10.1016/j.tsep.2020.100675 [10] 陈文强, 杨睿孜, 赵宇飞, 等. 基于组合权重-TOPSIS的岩质边坡稳定性评价[J]. 安全与环境学报, 2022, 22(3): 1198-1206. doi: 10.13637/j.issn.1009-6094.2021.0130CHEN W Q, YANG R Z, ZHAO Y F, et al. Rock slope stability evaluation based on combined weighted and TOPSIS[J]. Journal of Safety and Environment, 2022, 22(3): 1198-1206(in Chinese). doi: 10.13637/j.issn.1009-6094.2021.0130 [11] 冯诗愚, 冯晨曦, 汪其祥, 等. 气体分配方式对民机多隔仓燃油箱惰化的影响[J]. 北京航空航天大学学报, 2012, 38(5): 595-600.FENG S Y, FENG C X, WANG Q X, et al. Influent of inerting process of multi-bays central fuel tank for civil passenger airplane under various gas distributions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 595-600(in Chinese). [12] 张声奇. 民机燃油箱冲洗惰化过程的工程计算与数值模拟研究[D]. 南京: 南京理工大学, 2013.ZHANG S Q. Engineering method and numerical simulation research of washing inerting process in civil aircraft fuel tank[D]. Nanjing: Nanjing University of Science and Technology, 2013 (in Chinese). [13] FROST J, KELLER K, LOWE J, et al. A note on interval estimation of the standard deviation of a gamma population with applications to statistical quality control[J]. Applied Mathematical Modelling, 2013, 37(4): 2580-2587. doi: 10.1016/j.apm.2012.05.027 [14] GATH E G, HAYES K. Bounds for a multivariate extension of range over standard deviation based on the Mahalanobis distance[J]. Linear Algebra and Its Applications, 2011, 435(6): 1267-1276. doi: 10.1016/j.laa.2011.03.039 [15] CAVAGE W M, KILS O. Inerting a boeing 747SP center wing tank scale model with nitrogen-enriched air: DOT/FAA/AR-02/51[R]. Washington, D. C. : FAA, 2002 [16] GOLROKH SANI A, NAJAFI H, AZIMI S S. CFD simulation of air-sparged slug flow in the flat-sheet membrane: A concentration polarization study[J]. Separation and Purification Technology, 2021, 270: 118816. doi: 10.1016/j.seppur.2021.118816 [17] TANG M, ZHANG S F, WANG D W, et al. CFD simulation of gas flow field distribution and design optimization of the tridimensional rotational flow sieve tray with different structural parameters[J]. Chemical Engineering Science, 2019, 201: 34-49. doi: 10.1016/j.ces.2019.01.049 [18] BAAK M, KOOPMAN R, SNOEK H, et al. A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics[J]. Computational Statistics & Data Analysis, 2020, 152: 107043. [19] EDELMANN D, MÓRI T F, SZÉKELY G J. On relationships between the Pearson and the distance correlation coefficients[J]. Statistics & Probability Letters, 2021, 169: 108960. [20] 王志伟, 王学德, 刘卫华, 等. 不同进气方式对某民机中央翼油箱惰化性能的影响[J]. 安全与环境学报, 2012, 12(3): 172-176. doi: 10.3969/j.issn.1009-6094.2012.03.041WANG Z W, WANG X D, LIU W H, et al. Influence of different distribution methods on the inerting process of a civil airplane center wing tank[J]. Journal of Safety and Environment, 2012, 12(3): 172-176(in Chinese). doi: 10.3969/j.issn.1009-6094.2012.03.041 [21] 王学德, 王志伟, 刘卫华, 等. 某中央翼燃油箱惰化流场的数值模拟及特性分析[J]. 航空动力学报, 2012, 27(12): 2641-2647.WANG X D, WANG Z W, LIU W H, et al. Numerical simulation and analysis of nitrogen-enriched air flow in a center wing tank[J]. Journal of Aerospace Power, 2012, 27(12): 2641-2647(in Chinese).