留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不规则燃油箱惰化系统进出口优化方法

邵垒 彭阳 卢夏 张超 贺佳伟 杨文举

邵垒,彭阳,卢夏,等. 不规则燃油箱惰化系统进出口优化方法[J]. 北京航空航天大学学报,2023,49(10):2628-2634 doi: 10.13700/j.bh.1001-5965.2021.0768
引用本文: 邵垒,彭阳,卢夏,等. 不规则燃油箱惰化系统进出口优化方法[J]. 北京航空航天大学学报,2023,49(10):2628-2634 doi: 10.13700/j.bh.1001-5965.2021.0768
SHAO L,PENG Y,LU X,et al. Optimization method for inlet and outlet of irregular fuel tank inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2628-2634 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0768
Citation: SHAO L,PENG Y,LU X,et al. Optimization method for inlet and outlet of irregular fuel tank inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2628-2634 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0768

不规则燃油箱惰化系统进出口优化方法

doi: 10.13700/j.bh.1001-5965.2021.0768
基金项目: 国家自然科学基金委员会-中国民航局民航联合研究基金(U1933121);重庆市教委科学技术研究项目(KJQN201900738);飞行器环境控制与生命保障工业和信息化部重点实验室开放课题(KLAECLS-E-202002)
详细信息
    通讯作者:

    E-mail:shaolei@cqjtu.edu.cn

  • 中图分类号: V228

Optimization method for inlet and outlet of irregular fuel tank inerting system

Funds: National Natural Science Foundation of China-Civil Aviation Joint Research Fund of China (U1933121); Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN201900738); Fund of Key Laboratory of Aircraft Environment Control and Life Support of MIIT (KLAECLS-E-202002)
More Information
  • 摘要:

    为解决不规则燃油箱惰化时,出现的氧体积分数分布不均匀、惰化区域不充分的难题,以熵权改进优劣解距离(TOPSIS)理论为基础,提出一种适用于不规则油箱惰化系统的优化方法,并结合数值仿真方法进行综合评价,实现波音747飞机惰化系统进出口的优化设计。结果表明:根据熵权改进TOPSIS理论设计的惰化方案,不仅可以降低惰性气体流量需求,而且可以使得惰化空间氧体积分数分布更为均匀;优化后的波音747飞机惰化方案,综合性能指标提升22.67%,速度性指标提升2.97%,均匀性指标提升27.78%;单侧偏置惰化方案设计思路,可以增加流通路径、延长惰性气体存续时间,使得油箱惰化时氧气分布更为均匀、氧体积分数下降迅速。

     

  • 图 1  波音747飞机中央翼油箱结构及网格划分

    Figure 1.  Fuel tank structure and spatial mesh of Boeing 747 center wing tank

    图 2  仿真结果与实验结果对比

    Figure 2.  Comparison between simulation and experimental results

    图 3  惰化系统进出口优化方案

    Figure 3.  Optimization scheme of inlet and outlet for inserting system

    图 4  氧体积分数分布对比

    Figure 4.  Comparison of oxygen concentration distribution

    表  1  各方案的速度性指标

    Table  1.   Speed metrics of each scheme s

    方案Bay1Bay2Bay3Bay4Bay5Bay6
    原方案1289.8669.2115.7348.9690.6738.6
    11220.9580.6743.3900.5298.5790.2
    21168.4509.5226.9678.8835.8964.4
    3997.9718.6427.1700.7149.7396.8
    41275.2675.3413.9698.3150.4406.1
    51413.4839.6406.0535.3151.1393.1
    下载: 导出CSV

    表  2  各方案的均匀性指标

    Table  2.   Uniformity metrics of each scheme 10−3

    方案Bay1Bay2Bay3Bay4Bay5Bay6
    原方案5.1065.3020.0050.7254.9753.319
    14.6214.6205.3803.5151.0019.010
    26.9643.7140.3387.1696.3904.772
    32.6016.6871.1133.3360.0251.628
    45.3245.1640.9183.4920.0291.641
    54.7635.4430.8301.6590.0281.310
    下载: 导出CSV

    表  3  各项指标的熵值与熵权

    Table  3.   Entropy value and entropy weight of each metric

    指标熵值Ej熵权Wj
    Bay1速度性0.9970.002
    Bay2速度性0.9930.005
    Bay3速度性0.9280.053
    Bay4速度性0.9790.015
    Bay5速度性0.8570.104
    Bay6速度性0.9620.027
    Bay1均匀性0.9800.015
    Bay2均匀性0.9920.006
    Bay3均匀性0.6440.258
    Bay4均匀性0.8970.075
    Bay5均匀性0.5310.340
    Bay6均匀性0.8620.100
    下载: 导出CSV

    表  4  综合评价结果

    Table  4.   Comprehensive evaluation results

    方案$D_{i^+} $$D_{i^-} $Mi排名
    原方案0.2650.2130.4454
    10.2320.2620.5315
    20.2350.2800.5436
    30.3440.0570.1423
    40.3480.0500.1252
    50.3530.0410.1041
    下载: 导出CSV

    表  5  各性能指标提升效果

    Table  5.   Improvement effect of each performance metrics

    方案提升率/%
    速度性指标均匀性指标综合性能指标
    1−17.68−44.85−39.25
    2−13.78−51.02−43.35
    311.9920.8018.99
    46.0614.7412.95
    52.9727.7822.67
    下载: 导出CSV
  • [1] 冯诗愚, 任童, 谢辉辉, 等. 耗氧型惰化反应器起燃特性[J]. 航空学报, 2021, 42(3): 124182.

    FENG S Y, REN T, XIE H H, et al. Light-off characteristics of oxygen-consuming inerting reactor[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 124182(in Chinese).
    [2] CAVAGE W. Modeling inert gas distribution in commercial transport aircraft fuel tanks[C]//Proceedings of the 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. Reston: AIAA, 2002.
    [3] CAVAGE W, BOWMAN T. Modeling In-flight inert gas distribution in a 747 center wing fuel tank[C]//Proceedings of the 35th AIAA Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2005.
    [4] CAVAGE W M. Modeling of In-flight fuel tank inerting for FAA OBIGGS research[C]//4th Triennial Fire and Cabin Safety Research Conference. Washington, D. C.: FAA, 2004.
    [5] 冯晨曦, 刘卫华, 鹿世化, 等. 气体分配方式对多隔仓燃油箱地面惰化的影响[J]. 航空动力学报, 2011, 26(11): 2528-2533.

    FENG C X, LIU W H, LU S H, et al. Study on ground-based inerting process influenced by different gas distribution for multi-bay fuel tank[J]. Journal of Aerospace Power, 2011, 26(11): 2528-2533(in Chinese).
    [6] 鹿世化. 油箱惰化空间浓度场模拟和气流优化的理论与实验研究[D]. 南京: 南京航空航天大学, 2012.

    LU S H. Numerical simulation of oxygen distribution in aircraft fuel tank ullage and theoretical and experimental study of airflow optimization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese).
    [7] TAVANA M, HATAMI-MARBINI A. A group AHP-TOPSIS framework for human spaceflight mission planning at NASA[J]. Expert Systems With Applications, 2011, 38(11): 13588-13603.
    [8] CHAUHAN R, SINGH T, TIWARI A, et al. Hybrid entropy - TOPSIS approach for energy performance prioritization in a rectangular channel employing impinging air jets[J]. Energy, 2017, 134: 360-368. doi: 10.1016/j.energy.2017.06.021
    [9] KUMAR C, RANA K B, TRIPATHI B. Performance evaluation of diesel-additives ternary fuel blends: An experimental investigation, numerical simulation using hybrid Entropy-TOPSIS method and economic analysis[J]. Thermal Science and Engineering Progress, 2020, 20: 100675. doi: 10.1016/j.tsep.2020.100675
    [10] 陈文强, 杨睿孜, 赵宇飞, 等. 基于组合权重-TOPSIS的岩质边坡稳定性评价[J]. 安全与环境学报, 2022, 22(3): 1198-1206. doi: 10.13637/j.issn.1009-6094.2021.0130

    CHEN W Q, YANG R Z, ZHAO Y F, et al. Rock slope stability evaluation based on combined weighted and TOPSIS[J]. Journal of Safety and Environment, 2022, 22(3): 1198-1206(in Chinese). doi: 10.13637/j.issn.1009-6094.2021.0130
    [11] 冯诗愚, 冯晨曦, 汪其祥, 等. 气体分配方式对民机多隔仓燃油箱惰化的影响[J]. 北京航空航天大学学报, 2012, 38(5): 595-600.

    FENG S Y, FENG C X, WANG Q X, et al. Influent of inerting process of multi-bays central fuel tank for civil passenger airplane under various gas distributions[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(5): 595-600(in Chinese).
    [12] 张声奇. 民机燃油箱冲洗惰化过程的工程计算与数值模拟研究[D]. 南京: 南京理工大学, 2013.

    ZHANG S Q. Engineering method and numerical simulation research of washing inerting process in civil aircraft fuel tank[D]. Nanjing: Nanjing University of Science and Technology, 2013 (in Chinese).
    [13] FROST J, KELLER K, LOWE J, et al. A note on interval estimation of the standard deviation of a gamma population with applications to statistical quality control[J]. Applied Mathematical Modelling, 2013, 37(4): 2580-2587. doi: 10.1016/j.apm.2012.05.027
    [14] GATH E G, HAYES K. Bounds for a multivariate extension of range over standard deviation based on the Mahalanobis distance[J]. Linear Algebra and Its Applications, 2011, 435(6): 1267-1276. doi: 10.1016/j.laa.2011.03.039
    [15] CAVAGE W M, KILS O. Inerting a boeing 747SP center wing tank scale model with nitrogen-enriched air: DOT/FAA/AR-02/51[R]. Washington, D. C. : FAA, 2002
    [16] GOLROKH SANI A, NAJAFI H, AZIMI S S. CFD simulation of air-sparged slug flow in the flat-sheet membrane: A concentration polarization study[J]. Separation and Purification Technology, 2021, 270: 118816. doi: 10.1016/j.seppur.2021.118816
    [17] TANG M, ZHANG S F, WANG D W, et al. CFD simulation of gas flow field distribution and design optimization of the tridimensional rotational flow sieve tray with different structural parameters[J]. Chemical Engineering Science, 2019, 201: 34-49. doi: 10.1016/j.ces.2019.01.049
    [18] BAAK M, KOOPMAN R, SNOEK H, et al. A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics[J]. Computational Statistics & Data Analysis, 2020, 152: 107043.
    [19] EDELMANN D, MÓRI T F, SZÉKELY G J. On relationships between the Pearson and the distance correlation coefficients[J]. Statistics & Probability Letters, 2021, 169: 108960.
    [20] 王志伟, 王学德, 刘卫华, 等. 不同进气方式对某民机中央翼油箱惰化性能的影响[J]. 安全与环境学报, 2012, 12(3): 172-176. doi: 10.3969/j.issn.1009-6094.2012.03.041

    WANG Z W, WANG X D, LIU W H, et al. Influence of different distribution methods on the inerting process of a civil airplane center wing tank[J]. Journal of Safety and Environment, 2012, 12(3): 172-176(in Chinese). doi: 10.3969/j.issn.1009-6094.2012.03.041
    [21] 王学德, 王志伟, 刘卫华, 等. 某中央翼燃油箱惰化流场的数值模拟及特性分析[J]. 航空动力学报, 2012, 27(12): 2641-2647.

    WANG X D, WANG Z W, LIU W H, et al. Numerical simulation and analysis of nitrogen-enriched air flow in a center wing tank[J]. Journal of Aerospace Power, 2012, 27(12): 2641-2647(in Chinese).
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  137
  • HTML全文浏览量:  30
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-01-27
  • 网络出版日期:  2022-03-01
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答