留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于变分贝叶斯的连续-离散最大相关熵CKF算法

胡浩然 陈树新 吴昊 何仁珂

胡浩然,陈树新,吴昊,等. 基于变分贝叶斯的连续-离散最大相关熵CKF算法[J]. 北京航空航天大学学报,2023,49(10):2859-2866 doi: 10.13700/j.bh.1001-5965.2021.0769
引用本文: 胡浩然,陈树新,吴昊,等. 基于变分贝叶斯的连续-离散最大相关熵CKF算法[J]. 北京航空航天大学学报,2023,49(10):2859-2866 doi: 10.13700/j.bh.1001-5965.2021.0769
HU H R,CHEN S X,WU H,et al. Continuous-discrete maximum correntropy CKF algorithm based on variational Bayes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2859-2866 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0769
Citation: HU H R,CHEN S X,WU H,et al. Continuous-discrete maximum correntropy CKF algorithm based on variational Bayes[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(10):2859-2866 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0769

基于变分贝叶斯的连续-离散最大相关熵CKF算法

doi: 10.13700/j.bh.1001-5965.2021.0769
基金项目: 国家自然科学基金(61703420,62073337);陕西省自然科学基础研究计划(2020JQ-479)
详细信息
    通讯作者:

    E-mail:wuhaostudy@163.com

  • 中图分类号: TP273

Continuous-discrete maximum correntropy CKF algorithm based on variational Bayes

Funds: National Natural Science Foundation of China (61703420,62073337); Natural Science Basic Research Program of Shaanxi (2020JQ-479)
More Information
  • 摘要:

    针对纯方位目标跟踪中测量噪声协方差未知和非高斯测量噪声突变问题,提出了一种平方根连续-离散变分贝叶斯最大相关熵容积卡尔曼滤波(SRCD-VBMCCKF)算法。将目标跟踪模型建立为连续状态空间-离散测量空间模型,提高了目标跟踪的解算精度;由变分贝叶斯准则对未知的时变测量噪声进行估计,提升了算法的自适应性;考虑到测量中出现的非高斯突变噪声,由最大相关熵准则构建抗差因子,进一步增强了算法对异常测量值的鲁棒能力。仿真结果表明:所提算法能够对测量中的未知时变噪声和非高斯重尾突变噪声有效抑制,且相比于传统滤波算法,所提算法兼具自适应性和鲁棒性。

     

  • 图 1  时变参数${\alpha _{{k}}}$

    Figure 1.  Time-varying parameter ${\alpha _{{k}}}$

    图 2  未知时变噪声下各算法的${e_{{\text{RMSEpos}}}}$

    Figure 2.  ${e_{{\text{RMSEpos}}}}$ of each algorithm under unknown time-varying noise

    图 3  未知时变噪声下各算法的${e_{{\text{RMSEvel}}}}$

    Figure 3.  ${e_{{\text{RMSEvel}}}}$ of each algorithm under unknown time-varying noise

    图 4  非高斯突变噪声下各算法的${e_{{\text{RMSEpos}}}}$

    Figure 4.  ${e_{{\text{RMSEpos}}}}$ of each algorithm under non-Gaussian outlier noise

    图 5  非高斯突变噪声下各算法的${e_{{\text{RMSEvel}}}}$

    Figure 5.  ${e_{{\text{RMSEvel}}}}$ of each algorithm under non-Gaussian outlier noise

    图 6  叠加噪声下各算法的${e_{{\text{RMSEpos}}}}$

    Figure 6.  ${e_{{\text{RMSEpos}}}}$ of each algorithm under superimposed noise

    图 7  叠加噪声下各算法的${e_{{\text{RMSEvel}}}}$

    Figure 7.  ${e_{{\text{RMSEvel}}}}$ of each algorithm under superimposed noise

    表  1  异常突变值设置点

    Table  1.   Set points of outliers

    时间/s测量噪声
    15010$ \boldsymbol{R}_k $
    2005$ \boldsymbol{R}_k $
    23015$ \boldsymbol{R}_k $
    25020$ \boldsymbol{R}_k $
    30030$ \boldsymbol{R}_k $
    下载: 导出CSV
  • [1] 刘玉双, 赵剡, 吴发林. 基于外定界椭球集员估计的纯方位目标跟踪[J]. 北京航空航天大学学报, 2017, 43(3): 497-505. doi: 10.13700/j.bh.1001-5965.2016.0196

    LIU Y S, ZHAO Y, WU F L. Bearing-only target tracking based on ellipsoidal outer-bounding set-membership estimation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(3): 497-505(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0196
    [2] HE R K, CHEN S X, WU H, et al. Adaptive covariance feedback cubature Kalman filtering for continuous-discrete bearings-only tracking system[J]. IEEE Access, 2018, 7: 2686-2694.
    [3] ARASARATNAM I, HAYKIN S R, HURD T R. Cubature Kalman filtering for continuous-discrete systems: Theory and simulations[J]. IEEE Transactions on Signal Processing, 2010, 58(10): 4977-4993. doi: 10.1109/TSP.2010.2056923
    [4] CROUSE D F. Cubature Kalman filters for continuous-time dynamic models. Part Ⅱ: A solution based on moment matching[C]//Proceedings of the IEEE Radar Conference. Piscataway: IEEE Press, 2014: 194-199.
    [5] KULIKOVA M, KULIKOV G Y. NIRK-based accurate continuous-discrete extended Kalman filters for estimating continuous-time stochastic target tracking models[J]. Journal of Computational and Applied Mathematics, 2017, 316: 260-270. doi: 10.1016/j.cam.2016.08.036
    [6] NARASIMHAPPA M, MAHINDRAKAR A D, GUIZILINI V C, et al. MEMS-based IMU drift minimization: Sage husa adaptive robust Kalman filtering[J]. IEEE Sensors Journal, 2020, 20(1): 250-260. doi: 10.1109/JSEN.2019.2941273
    [7] SARKKA S, NUMMENMAA A. Recursive noise adaptive Kalman filtering by variational Bayesian approximations[J]. IEEE Transactions on Automatic Control, 2009, 54(3): 596-600. doi: 10.1109/TAC.2008.2008348
    [8] SÄRKKÄ S, HARTIKAINEN J. Non-linear noise adaptive Kalman filtering via variational Bayes[C]//Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing. Piscataway: IEEE Press, 2013: 1-6.
    [9] HUANG Y L, HANG Y G, WU Z M, et al. A novel adaptive Kalman filter with inaccurate process and measurement noise covariance matrices[J]. IEEE Transactions on Automatic Control, 2018, 63(2): 594-601.
    [10] CHANG G B, LIU M. M-estimator-based robust Kalman filter for systems with process modeling errors and rank deficient measurement models[J]. Nonlinear Dynamics, 2015, 80(3): 1431-1449. doi: 10.1007/s11071-015-1953-0
    [11] HUANG W, SHAN H J, XU J S, et al. Robust variable kernel width for maximum correntropy criterion algorithm[J]. Signal Processing, 2021, 182: 107948. doi: 10.1016/j.sigpro.2020.107948
    [12] LIU X, CHEN B D, XU B, et al. Maximum correntropy unscented filter[J]. International Journal of Systems Science, 2017, 48(8): 1607-1615. doi: 10.1080/00207721.2016.1277407
    [13] 卢航, 郝顺义, 彭志颖, 等. 基于MCC的鲁棒高阶CKF在组合导航中的应用[J]. 计算机工程与应用, 2020, 56(1): 257-264. doi: 10.3778/j.issn.1002-8331.1809-0206

    LU H, HAO S Y, PENG Z Y, et al. Application of robust high-degree CKF based on MCC in integrated navigation[J]. Computer Engineering and Applications, 2020, 56(1): 257-264(in Chinese). doi: 10.3778/j.issn.1002-8331.1809-0206
    [14] KULIKOV G Y, KULIKOVA M V. Accurate cubature and extended Kalman filtering methods for estimating continuous-time nonlinear stochastic systems with discrete measurements[J]. Applied Numerical Mathematics, 2017, 111: 260-275. doi: 10.1016/j.apnum.2016.09.015
    [15] IZANLOO R, FAKOORIAN S A, YAZDI H S, et al. Kalman filtering based on the maximum correntropy criterion in the presence of non-Gaussian noise[C]//Proceedings of the Annual Conference on Information Science and Systems. Piscataway: IEEE Press, 2016: 500-505.
    [16] 张敬艳, 修建娟, 董凯. 噪声非高斯条件下基于最大相关熵准则的容积滤波算法[J]. 兵器装备工程学报, 2021, 42(8): 245-250. doi: 10.11809/bqzbgcxb2021.08.039

    ZHANG J Y, XIU J J, DONG K. Maximum correntropy cubature Kalman filter under non-Gaussian noise[J]. Journal of Ordnance Equipment Engineering, 2021, 42(8): 245-250(in Chinese). doi: 10.11809/bqzbgcxb2021.08.039
    [17] WANG G Q, LI N, ZHANG Y G. Maximum correntropy unscented Kalman and information filters for non-Gaussian measurement noise[J]. Journal of the Franklin Institute, 2017, 354(18): 8659-8677. doi: 10.1016/j.jfranklin.2017.10.023
    [18] ARASARATNAM I, HAYKIN S. Cubature Kalman filters[J]. IEEE Transactions on Automatic Control, 2009, 54(6): 1254-1269. doi: 10.1109/TAC.2009.2019800
    [19] 彭美康, 郭蕴华, 汪敬东, 等. 基于鲁棒容积卡尔曼滤波的自适应目标跟踪算法[J]. 控制理论与应用, 2020, 37(4): 793-800.

    PENG M K, GUO Y H, WANG J D, et al. Adaptive target tracking algorithm based on robust cubature Kalman filter[J]. Control Theory & Applications, 2020, 37(4): 793-800(in Chinese).
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  675
  • HTML全文浏览量:  54
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-20
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-03-11
  • 整期出版日期:  2023-10-31

目录

    /

    返回文章
    返回
    常见问答