留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自动铺丝压实力导纳控制器设计与参数优化方法

衣明辉 张家瑞 张武翔 陈维强 丁希仑

衣明辉,张家瑞,张武翔,等. 自动铺丝压实力导纳控制器设计与参数优化方法[J]. 北京航空航天大学学报,2023,49(11):2968-2976 doi: 10.13700/j.bh.1001-5965.2021.0774
引用本文: 衣明辉,张家瑞,张武翔,等. 自动铺丝压实力导纳控制器设计与参数优化方法[J]. 北京航空航天大学学报,2023,49(11):2968-2976 doi: 10.13700/j.bh.1001-5965.2021.0774
YI M H,ZHANG J R,ZHANG W X,et al. Design and parameter optimization method of compaction admittance controller for automated fiber placement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2968-2976 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0774
Citation: YI M H,ZHANG J R,ZHANG W X,et al. Design and parameter optimization method of compaction admittance controller for automated fiber placement[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2968-2976 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0774

自动铺丝压实力导纳控制器设计与参数优化方法

doi: 10.13700/j.bh.1001-5965.2021.0774
基金项目: 国家自然科学基金(51575018)
详细信息
    通讯作者:

    E-mail:zhangwuxiang@buaa.edu.cn

  • 中图分类号: V261.97

Design and parameter optimization method of compaction admittance controller for automated fiber placement

Funds: National Natural Science Foundation of China (51575018)
More Information
  • 摘要:

    铺放压实力是连续纤维复合材料结构自动铺放成型的关键工艺参数之一。由于多数铺丝设备刚性高且位控精度不足,往往容易导致压实力波动较大,严重影响成型质量。因此,面向纤维预浸料自动铺放成型过程中压实力的柔顺控制要求,构建铺丝设备压实机构与成型模具间的二阶等效模型,设计一种基于导纳控制原理的铺放压实力控制器,采用烟花群体智能算法对控制器的惯性参数、阻尼参数及刚度参数进行优化求解,并通过建模仿真与铺放试验验证铺放压实力导纳控制器的有效性。

     

  • 图 1  铺丝设备硬件结构示意图

    Figure 1.  Structure diagram of automated fiber placement

    图 2  导纳控制压实接触模型

    Figure 2.  Contact model of compaction pressure admittance control

    图 3  铺放压实力导纳控制原理

    Figure 3.  Admittance control principle of compaction pressure

    图 4  铺放压实力导纳控制仿真模型

    Figure 4.  Simulation model of compaction pressure regulated by admittance controller

    图 5  导纳控制器结构

    Figure 5.  Structure of admittance controller

    图 6  导纳控制参数对系统动态性能的影响

    Figure 6.  Influence of admittance control parameters on system dynamic performance

    图 7  导纳控制参数优化流程

    Figure 7.  Flow chart of admitance control parameters optimization

    图 8  导纳控制参数优化结果

    Figure 8.  Optimization results of admittance control parameters

    图 9  自动铺放试验平台

    Figure 9.  Test platform of automated fiber placement

    图 10  试验平台控制系统

    Figure 10.  Control system of the test platform

    图 11  期望值为20 N时压实力波动曲线

    Figure 11.  Measured compaction pressure with expected value as 20 N

    图 12  期望值为50 N时压实力波动曲线

    Figure 12.  Measured compaction pressure with expected value as 50 N

    表  1  烟花算法及优化目标主要参数

    Table  1.   Main parameters of fireworks algorithm and optimization objective

    参数设定值
    烟花阵列数量50
    变量维数3
    惯性参数空间(0,10)
    阻尼参数空间(100,300)
    刚度参数空间(0,10)
    高斯变异火花数量3
    爆炸火花数目常数5
    爆炸半径常数5
    迭代次数300
    ITAE权重ω10.01
    稳态误差权重ω20.1
    下载: 导出CSV
  • [1] SOUTIS C. Carbon fiber reinforced plastics in aircraft construction[J]. Materials Science and Engineering:A, 2005, 412(1-2): 171-176. doi: 10.1016/j.msea.2005.08.064
    [2] OROMIEHIE E, PRUSTY B G, COMPSTON P, et al. Automated fibre placement based composite structures: Review on the defects, impacts and inspections techniques[J]. Composite Structures, 2019, 224: 110987. doi: 10.1016/j.compstruct.2019.110987
    [3] SHIRINZADEH B, ALICI G, FOONG C W, et al. Fabrication process of open surfaces by robotic fibre placement[J]. Robotics and Computer-Integrated Manufacturing, 2004, 20(1): 17-28. doi: 10.1016/S0736-5845(03)00050-4
    [4] AIZED T, SHIRINZADEH B. Robotic fiber placement process analysis and optimization using response surface method[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(1): 393-404.
    [5] CHEN M J, WU B L, CHEN Y, et al. Design of tension control system for automated fibre placement[C]// Proceedings of the 5th International Conference on Mechanical Engineering, Materials and Energy. Paris: Atlantis Press, 2016.
    [6] DI FRANCESCO M, VELDENZ L, DELL'ANNO G, et al. Heater power control for multi-material, variable speed automated fibre placement[J]. Composites Part A:Applied Science and Manufacturing, 2017, 101: 408-421. doi: 10.1016/j.compositesa.2017.06.015
    [7] JIANG J X, HE Y X, WANG H, et al. Modeling and experimental validation of compaction pressure distribution for automated fiber placement[J]. Composite Structures, 2021, 256: 113101. doi: 10.1016/j.compstruct.2020.113101
    [8] DUBOIS O, LE CAM J B, BÉAKOU A. Experimental analysis of prepreg tack[J]. Experimental Mechanics, 2010, 50(5): 599-606. doi: 10.1007/s11340-009-9236-7
    [9] DE JESUS G O I, PATROUIX O, AOUSTIN Y. Pressure based approach for automated fiber placement (AFP) with sensor based feedback loop and flexible component in the effector[J]. IFAC-PapersOnLine, 2017, 50(1): 794-799. doi: 10.1016/j.ifacol.2017.08.511
    [10] 段玉岗, 刘芬芬, 陈耀, 等. 纤维铺放压紧力及预浸带加热温度对复合材料力学性能的影响[J]. 复合材料学报, 2012, 29(4): 148-156. doi: 10.13801/j.cnki.fhclxb.2012.04.025

    DUAN Y G, LIU F F, CHEN Y, et al. Effects of compaction force and heating temperature of prepreg on composite mechanical properties during fiber placement process[J]. Acta Materiae Compositae Sinica, 2012, 29(4): 148-156(in Chinese). doi: 10.13801/j.cnki.fhclxb.2012.04.025
    [11] 马志涛, 李初晔, 冯长征, 等. 铺放压力和铺放压辊对丝束铺放质量影响的研究[J]. 航空制造技术, 2018, 61(20): 88-91. doi: 10.16080/j.issn1671-833x.2018.20.088

    MA Z T, LI C Y, FENG C Z, et al. Effect of placement pressure and placement roller on quality of tows placement[J]. Aeronautical Manufacturing Technology, 2018, 61(20): 88-91(in Chinese). doi: 10.16080/j.issn1671-833x.2018.20.088
    [12] HOGAN N. Impedance control: An approach to manipulation: Part I—theory, implementation and applications[J]. Journal of Dynamic Systems, Measurement, and Control, 1985, 107(1): 1-24.
    [13] MO Y, GAO S, JIANG Z H, et al. Impedance control with force signal compensation on space manipulator-assisted docking mission[C]//2014 IEEE International Conference on Information and Automation. Piscataway: IEEE Press, 2014: 1239-1243.
    [14] SAYYAADI H, SHARIFI M. Adaptive impedance control of UAVs interacting with environment using a robot manipulator[C]//2014 Second RSI/ISM International Conference on Robotics and Mechatronics. Piscataway: IEEE Press, 2014: 636-641.
    [15] 喻洋, 王耀兵, 魏世民, 等. 基于柔顺控制的机器人装配技术[J]. 北京邮电大学学报, 2020, 43(4): 1-6. doi: 10.13190/j.jbupt.2019-227

    YU Y, WANG Y B, WEI S M, et al. Robot assembly technology based on compliance control[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(4): 1-6(in Chinese). doi: 10.13190/j.jbupt.2019-227
    [16] LASKY T A, HSIA T C. On force-tracking impedance control of robot manipulators[C]//Proceedings of 1991 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 1991: 274-280.
    [17] JIN M H, ZHANG Z J, NI F L, et al. Cartesian Space Synchronous Impedance Control of Two 7-DOF robot arm manipulators[C]// 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2014: 4750-4756.
    [18] 李正义. 机器人与环境间力/位置控制技术研究与应用[D]. 武汉: 华中科技大学, 2011.

    LI Z Y. Research and application of robot force position control methods for robot-environment interaction[D]. Wuhan: Huazhong University of Science and Technology, 2011 (in Chinese).
    [19] TAN Y, YU C, ZHENG S Q, et al. Introduction to fireworks algorithm[J]. International Journal of Swarm Intelligence Research, 2013, 4(4): 39-70. doi: 10.4018/ijsir.2013100103
    [20] 谭营, 郑少秋. 烟花算法研究进展[J]. 智能系统学报, 2014, 9(5): 515-528. doi: 10.3969/j.issn.1673-4785.201409010

    TAN Y, ZHENG S Q. Recent advances in fireworks algorithm[J]. CAAI Transactions on Intelligent Systems, 2014, 9(5): 515-528(in Chinese). doi: 10.3969/j.issn.1673-4785.201409010
    [21] XUE J J, WANG Y, LI H, et al. Advanced fireworks algorithm and its application research in PID parameters tuning[J]. Mathematical Problems in Engineering, 2016, 2016: 1-9.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  120
  • HTML全文浏览量:  35
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 录用日期:  2022-02-16
  • 网络出版日期:  2022-03-09
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答