留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VMD-MA的GNSS-MR雪深反演方法

胡媛 袁鑫泰 刘卫 江志豪 洪学宝

胡媛,袁鑫泰,刘卫,等. 基于VMD-MA的GNSS-MR雪深反演方法[J]. 北京航空航天大学学报,2023,49(11):2890-2897 doi: 10.13700/j.bh.1001-5965.2021.0777
引用本文: 胡媛,袁鑫泰,刘卫,等. 基于VMD-MA的GNSS-MR雪深反演方法[J]. 北京航空航天大学学报,2023,49(11):2890-2897 doi: 10.13700/j.bh.1001-5965.2021.0777
HU Y,YUAN X T,LIU W,et al. GNSS-MR snow depth inversion method based on variational mode decomposition and moving average[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2890-2897 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0777
Citation: HU Y,YUAN X T,LIU W,et al. GNSS-MR snow depth inversion method based on variational mode decomposition and moving average[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2890-2897 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0777

基于VMD-MA的GNSS-MR雪深反演方法

doi: 10.13700/j.bh.1001-5965.2021.0777
基金项目: 国家自然科学基金(52071199);上海市自然科学基金(19ZR1422800);上海市智能信息处理重点实验室开放研究计划(IIPL201904)
详细信息
    通讯作者:

    E-mail:liu@sreil.com

  • 中图分类号: P228.4;P412

GNSS-MR snow depth inversion method based on variational mode decomposition and moving average

Funds: National Natural Science Foundation of China (52071199); Natural Science Foundation of Shanghai (19ZR1422800); Open Reseach Program of Shanghai Key Lab of Intelligent Information Processing (IIPL201904)
More Information
  • 摘要:

    针对利用全球卫星导航系统多径反射(GNSS-MR)技术反演雪深过程中信噪比(SNR)序列趋势项分离不佳和反演结果波动较大的问题,提出一种基于变分模态分解(VMD)和移动平均(MA)的雪深反演方法。VMD算法通过自适应高通滤波有效分离SNR序列的趋势项,MA算法对初始反演结果进行平滑处理从而减少随机波动。选用瑞典KIRU站2021年前5个月GLONASS不同频段的SNR观测值开展实验,研究所提方法的可行性。结果表明:基于VMD算法的反演结果与气象站原位雪深相关系数超过0.95,均方根误差(RMSE)最低约5 cm,较传统算法减少近40%;经MA算法平滑处理后,反演精度进一步提高。考虑到GNSS站和气象站之间的差异性,选取GPS SNR反演结果作为参考数据源,不同参考数据源取得了一致的实验结论,验证了所提方法的可行性和有效性。

     

  • 图 1  GNSS-MR雪深反演几何关系

    Figure 1.  Geometry diagram of GNSS-MR snow depth inversion

    图 2  N=4时的VMD分解结果

    Figure 2.  Result of VMD decomposition when N=4

    图 3  SNR趋势项拟合效果对比

    Figure 3.  Comparison of fitting effects of SNR trend terms

    图 4  不同算法的SNR多径分量和LSP谱估计结果

    Figure 4.  SNR multipath components and LSP spectrum estimation results for different algorithms

    图 5  基于VMD-MA的GNSS-MR雪深反演模型

    Figure 5.  GNSS-MR snow depth inversion model based on VMD-MA

    图 6  KIRU站周围环境

    Figure 6.  Environment of KIRU station

    图 7  KIRU站2021年DOY 1的GLONASS卫星轨迹

    Figure 7.  Trajectories of GLONASS satellites of KIRU station on DOY 1, 2021

    图 8  MA算法对各频段SNR观测值的误差平滑结果

    Figure 8.  Error smoothing results of MA algorithm for SNR data in various frequency bands

    图 9  雪深反演结果与原位雪深的对比

    Figure 9.  Comparison of snow depth inversion results and in-situ snow depth

    表  1  GLONASS 收集的SNR的频段、频率和通道/代码

    Table  1.   Frequency band, frequency, and channel/code of SNR types collected from GLONASS

    频段频率/MHz通道/代码SNR类型
    G11602+9k/16C/AS1C
    PS1P
    G21246+9k/16PS2P
    下载: 导出CSV

    表  2  雪深反演结果评价比较

    Table  2.   Evaluation and comparison of snow depth inversion results

    算法 平均绝对误差/cm 均方根误差/cm 相关系数
    S1C S1P S2P S1C S1P S2P S1C S1P S2P
    无平滑处理LSF算法 6.9 7.5 11.4 7.3 10.1 19.6 0.94 0.94 0.86
    平滑处理LSF算法 4.2 7.4 11.0 4.8 10.0 19.4 0.98 0.95 0.89
    无平滑处理VMD算法 5.2 5.9 9.9 5.2 6.0 11.5 0.97 0.97 0.95
    平滑处理VMD算法 4.1 3.8 7.4 4.1 3.9 9.4 0.98 0.98 0.97
    下载: 导出CSV

    表  3  雪深反演结果评价比较(以GPS SNR为参考数据源)

    Table  3.   Evaluation and comparison of snow depth inversion results (taking GPS SNR as reference data source)

    算法 平均绝对误差/cm 均方根误差/cm 相关系数
    S1C S1P S2P S1C S1P S2P S1C S1P S2P
    无平滑处理LSF算法 10.1 12.3 16.2 10.9 14.9 23.9 0.912 0.89 0.79
    平滑处理LSF算法 8.6 12.2 15.8 9.5 14.8 23.7 0.95 0.9 0.83
    无平滑处理VMD算法 6.6 7.6 10.1 6.7 7.6 10.9 0.96 0.95 0.93
    平滑处理VMD算法 6.1 6.4 8.1 6.2 6.4 9.1 0.97 0.97 0.95
    下载: 导出CSV
  • [1] WALSH J E. Snow cover and atmospheric variability: Changes in the snow covering the earth’s surface affect both daily weather and long-term climate[J]. American Scientist, 1984, 72(1): 50-57.
    [2] 胡媛, 袁鑫泰, 陈行杨, 等. 小波变换和改进Burg算法的GNSS-IR海面高度反演模型[J]. 大地测量与地球动力学, 2022, 42(1): 21-24.

    HU Y, YUAN X T, CHEN X Y, et al. GNSS-IR model of sea level inversion combining wavelet transform with improved Burg algorithm[J]. Journal of Geodesy and Geodynamics, 2022, 42(1): 21-24(in Chinese).
    [3] GEREMIA-NIEVINSKI F, HOBIGER T, HAAS R, et al. SNR-based GNSS reflectometry for coastal sea-level altimetry: Results from the first IAG inter-comparison campaign[J]. Journal of Geodesy, 2020, 94(8): 1-15.
    [4] LI Z, CHEN P, ZHENG N Q, et al. Accuracy analysis of GNSS-IR snow depth inversion algorithms[J]. Advances in Space Research, 2021, 67(4): 1317-1332. doi: 10.1016/j.asr.2020.11.021
    [5] MARTIN-NEIRA M. A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry[J]. ESA Journal, 1993, 17(4): 331-355.
    [6] BILICH A, LARSON K M, AXELRAD P. Observations of signal-to-noise ratios (SNR) at geodetic GPS site CASA: Implications for phase multipath[J]. Proceedings of the Centre for European Geodynamics and Seismology, 2004, 23: 77-83.
    [7] LARSON K M, GUTMANN E D, ZAVOROTNY V U, et al. Can we measure snow depth with GPS receivers?[J]. Geophysical Research Letters, 2009, 36(17): L17502-L17506. doi: 10.1029/2009GL039430
    [8] NIEVINSKI F G, LARSON K M. Forward modeling of GPS multipath for near-surface reflectometry and positioning applications[J]. GPS Solutions, 2014, 18(2): 309-322. doi: 10.1007/s10291-013-0331-y
    [9] LARSON K M, NIEVINSKI F G. GPS snow sensing: Results from the earthscope plate boundary observatory[J]. GPS Solutions, 2013, 17(1): 41-52. doi: 10.1007/s10291-012-0259-7
    [10] TABIBI S, NIEVINSKI F G, VAN DAM T, et al. Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications[J]. Advances in Space Research, 2015, 55(4): 1104-1116. doi: 10.1016/j.asr.2014.11.019
    [11] JIN S, QIAN X, KUTOGLU H. Snow depth variations estimated from GPS-reflectometry: A case study in Alaska from L2P SNR data[J]. Remote Sensing, 2016, 8(1): 63-77. doi: 10.3390/rs8010063
    [12] TABIBI S, GEREMIA-NIEVINSKI F, VAN DAM T. Statistical comparison and combination of GPS, GLONASS, and multi-GNSS multipath reflectometry applied to snow depth retrieval[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3773-3785. doi: 10.1109/TGRS.2017.2679899
    [13] DYER S A, HE X. Least-squares fitting of data by polynomials[J]. IEEE Instrumentation & Measurement Magazine, 2001, 4(4): 46-51.
    [14] HU Y, YUAN X T, LIU W, et al. GNSS-IR model of sea level height estimation combining variational mode decomposition[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10405-10414. doi: 10.1109/JSTARS.2021.3118398
    [15] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2013, 62(3): 531-544.
    [16] 吴文轩, 王志坚, 张纪平, 等. 基于峭度的VMD分解中k值的确定方法研究[J]. 机械传动, 2018, 42(8): 153-157.

    WU W X, WANG Z J, ZHANG J P, et al. Research of the method of determining k value in VMD based on kurtosis[J]. Journal of Mechanical Transmission, 2018, 42(8): 153-157(in Chinese).
    [17] WILLIAMS S, NIEVINSKI F. Tropospheric delays in ground-based GNSS multipath reflectometry—Experimental evidence from coastal sites[J]. Journal of Geophysical Research:Solid Earth, 2017, 122(3): 2310-2327. doi: 10.1002/2016JB013612
    [18] ROUSSEL N, RAMILLIEN G, FRAPPART F, et al. Sea level monitoring and sea state estimate using a single geodetic receiver[J]. Remote Sensing of Environment, 2015, 171: 261-277. doi: 10.1016/j.rse.2015.10.011
    [19] LI F, LIU L, HUANG L, et al. GNSS snow depth monitoring using SNR observations[C]//Proceedings of the China Satellite Navigation Conference. Berlin: Springer, 2019: 211-219.
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  133
  • HTML全文浏览量:  39
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 录用日期:  2022-03-20
  • 网络出版日期:  2022-03-25
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答