留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑随机效应的多源信息融合剩余寿命预测

王凤飞 唐圣金 孙晓艳 祁帅 于传强 司小胜

王凤飞,唐圣金,孙晓艳,等. 考虑随机效应的多源信息融合剩余寿命预测[J]. 北京航空航天大学学报,2023,49(11):3075-3085 doi: 10.13700/j.bh.1001-5965.2021.0782
引用本文: 王凤飞,唐圣金,孙晓艳,等. 考虑随机效应的多源信息融合剩余寿命预测[J]. 北京航空航天大学学报,2023,49(11):3075-3085 doi: 10.13700/j.bh.1001-5965.2021.0782
WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0782
Citation: WANG F F,TANG S J,SUN X Y,et al. Remaining useful life prediction based on multi source information with considering random effects[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3075-3085 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0782

考虑随机效应的多源信息融合剩余寿命预测

doi: 10.13700/j.bh.1001-5965.2021.0782
基金项目: 国家自然科学基金(61703410,61873175,61873273,61773386,61922089);陕西省自然科学基础研究计划(2022JM-376)
详细信息
    通讯作者:

    E-mail:tangshengjin27@126.com

  • 中图分类号: TB114.3

Remaining useful life prediction based on multi source information with considering random effects

Funds: National Natural Science Foundation of China (61703410,61873175,61873273,61773386,61922089);Basic Research Plan of Shaanxi Natural Science Foundation of China (2022JM-376)
More Information
  • 摘要:

    为了合理利用同类设备的先验信息,提高参数估计和剩余使用寿命(RUL)预测精度,提出一种基于多源信息融合并考虑随机效应的RUL预测方法。利用考虑随机效应的线性Wiener过程对设备的退化过程进行建模;利用期望最大化(EM)算法,融合先验退化信息和先验失效寿命数据信息,计算模型中的未知参数;根据Wiener过程参数估计的性质,提出一种基于多源信息融合并考虑随机效应的非线性Wiener过程参数估计方法;利用激光器数据和疲劳裂纹数据进行实验验证。实验结果表明:与基于历史退化数据或失效寿命数据的方法相比,所提方法能有效提高参数估计和RUL预测的精度。

     

  • 图 1  本文方法流程(线性)

    Figure 1.  Flowchart of proposed method (linear)

    图 2  本文方法流程(非线性)

    Figure 2.  Flowchart of proposed method (nonlinear)

    图 3  仿真退化数据

    Figure 3.  Simulation degradation data

    图 4  ${\mu _\lambda }$随样本数量$N$变化的参数估计结果

    Figure 4.  Estimated ${\mu _\lambda }$ with change of sample number $N$

    图 5  $\sigma _\lambda ^2$随样本数量$N$变化的参数估计结果

    Figure 5.  Estimated $\sigma _\lambda ^2$ with change of sample number $N$

    图 6  $\sigma _B^2$随样本数量$N$变化的参数估计结果

    Figure 6.  Estimated $\sigma _B^2$ with change of sample number $N$

    图 7  非线性Wiener过程的仿真退化数据

    Figure 7.  Simulation degradation data of nonlinear Wiener process

    图 8  $\theta $随样本数量$N$和检测时间变化$k$的参数估计结果

    Figure 8.  Estimated $\theta $ with change of sample number $N$ and detection time $k$

    图 9  激光器的退化路径

    Figure 9.  Degradation paths of laser

    图 10  估计的寿命分布

    Figure 10.  Estimated lifetime distribution

    图 11  估计的剩余使用寿命分布

    Figure 11.  Estimated RUL distribution

    图 12  基于M0、M1和M2方法估计的剩余使用寿命MSEs

    Figure 12.  MSEs of RUL by M0, M1 and M2

    图 13  基于M0和M3方法估计的剩余使用寿命分布

    Figure 13.  Estimated RUL distribution by M0 and M3

    图 14  基于M0和M3方法估计的剩余使用寿命MSEs

    Figure 14.  Estimated MSEs of RUL by M0 and M3

    图 15  疲劳裂纹的退化路径

    Figure 15.  Degradation paths of fatigue crack

    图 16  基于M0、M1和M2方法估计的寿命分布

    Figure 16.  Estimated lifetime distribution by M0, M1, and M2

    图 17  基于M0、M1和M2方法估计的剩余使用寿命分布

    Figure 17.  Estimated RUL distribution by M0, M1, and M2

    图 18  基于M0、M1和M2方法估计的剩余使用寿命MSEs

    Figure 18.  Estimated MSEs by M0, M1 and M2

    图 19  基于M0和M3方法估计的剩余使用寿命分布

    Figure 19.  Estimated RUL distribution by M0 and M3

    图 20  基于M0和M3方法估计的剩余使用寿命MSEs

    Figure 20.  Estimated MSEs of RUL by M0 and M3

  • [1] CAI Z Y, CHEN Y X, GUO J S, et al. Remaining lifetime prediction for nonlinear degradation device with random effect[J]. Journal of Systems Engineering and Electronics, 2018, 29(5): 1101-1110. doi: 10.21629/JSEE.2018.05.20
    [2] WANG Z Z, CHEN Y X, CAI Z Y, et al. Methods for predicting the remaining useful life of equipment in consideration of the random failure threshold[J]. Journal of Systems Engineering and Electronics, 2020, 31(2): 415-431. doi: 10.23919/JSEE.2020.000018
    [3] 万昌豪, 刘志国, 唐圣金, 等. 基于不完美先验信息的随机系数回归模型剩余寿命预测方法[J]. 北京航空航天大学学报, 2021, 47(12): 2542-2551. doi: 10.13700/j.bh.1001-5965.2020.0439

    WANG C H, LIU Z G, TANG S J, et al. Remaining useful life prediction based on the nonlinear random coefficient regression model under imperfect prior information[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(12): 2542-2551(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0439
    [4] 刘君强, 胡东斌, 潘春露, 等. 基于超统计的多阶段航空发动机剩余寿命预测[J]. 北京航空航天大学学报, 2021, 47(1): 56-64. doi: 10.13700/j.bh.1001-5965.2019.0647

    LIU J Q, HU D B, PAN C L, et al. Remaining useful life prediction of multi-stage aero-engine based on super statistics[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(1): 56-64(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0647
    [5] 赵申坤, 姜潮, 龙湘云. 一种基于数据驱动和贝叶斯理论的机械系统剩余寿命预测方法[J]. 机械工程学报, 2018, 54(12): 115-124. doi: 10.3901/JME.2018.12.115

    ZHAO S K, JIANG C, LONG X Y. Remaining useful life estimation of mechanical systems based on the data-driven method and bayesian theory[J]. Journal of Mechanical Engineering, 2018, 54(12): 115-124(in Chinese). doi: 10.3901/JME.2018.12.115
    [6] ZHANG Z, SI X, HU C, et al. Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods[J]. European Journal of Operational Research, 2018, 271(3): 775-796. doi: 10.1016/j.ejor.2018.02.033
    [7] WANG D, TSUI K L. Brownian motion with adaptive drift for remaining useful life prediction: Revisited[J]. Mechanical Systems and Signal Processing, 2018, 99: 691-701. doi: 10.1016/j.ymssp.2017.07.015
    [8] TANG S, XU X, YU C, et al. Remaining useful life prediction with fusing failure time data and field degradation data with random effects[J]. IEEE Access, 2020, 8: 11964-11978. doi: 10.1109/ACCESS.2019.2948263
    [9] 黄亮, 刘君强, 贡英杰. 基于Wiener过程的发动机多阶段剩余寿命预测[J]. 北京航空航天大学学报, 2018, 44(5): 1081-1087. doi: 10.13700/j.bh.1001-5965.2017.0383

    HUANG L, LIU J Q, GONG Y J. Multi-phase residual life prediction of engines based on Wiener process[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 1081-1087(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0383
    [10] PENG C Y, TSENG S T. Mis-specification analysis of linear degradation models[J]. IEEE Transactions on Reliability, 2009, 58(3): 444-455. doi: 10.1109/TR.2009.2026784
    [11] WANG Z, HU C, FAN H. Real-time remaining useful life prediction for a nonlinear degrading system in service: Application to bearing data[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 211-222. doi: 10.1109/TMECH.2017.2666199
    [12] SI X S, WANG W, HU C H, et al. Estimating remaining useful life with three-source variability in degradation modeling[J]. IEEE Transactions on Reliability, 2014, 63(1): 167-190. doi: 10.1109/TR.2014.2299151
    [13] TANG S J, GUO X S, YU C Q, et al. Real time remaining useful life prediction based on nonlinear Wiener based degradation processes with measurement errors[J]. Journal of Central South University, 2014, 21(12): 4509-4517. doi: 10.1007/s11771-014-2455-9
    [14] TANG S, YU C, SUN X, et al. A note on parameters estimation for nonlinear Wiener processes with measurement errors[J]. IEEE Access, 2019, 7: 176756-176766. doi: 10.1109/ACCESS.2019.2954717
    [15] TANG S, YU C, WANG X, et al. Remaining useful life prediction of lithium-Ion batteries based on the Wiener process with measurement error[J]. Energies, 2014, 7(2): 520-547. doi: 10.3390/en7020520
    [16] LU C J, MEEKER W Q. Using degradation measures to estimate a time-to-failure distribution[J]. Technometrics, 1993, 35(2): 161-174. doi: 10.1080/00401706.1993.10485038
    [17] TANG S, WANG F, SUN X, et al. Unbiased parameters estimation and mis-specification analysis of Wiener process-based degradation model with random effects[J]. Applied Math Modelling, 2020, 109: 134-160.
    [18] GEBRAEEL N, ELWANY A, PAN J. Residual life predictions in the absence of prior degradation knowledge[J]. IEEE Transactions on Reliability, 2009, 58(1): 106-117. doi: 10.1109/TR.2008.2011659
    [19] WANG F, TANG S, SUN X, et al. Remaining useful life prediction based on nonlinear random coefficient regression model with fusing failure time data[J]. Journal of Systems Engineering and Electronics, 2023, 34(1): 247-258. doi: 10.23919/JSEE.2023.000006
    [20] LIU S, CHEN H, GUO B, et al. Residual life estimation by fusing few failure lifetime and degradation data from real-time updating[C]//2017 IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C). Piscataway: IEEE Press, 2017: 177-184.
    [21] SUN M, JING B, JIAO X, et al. Research on life prediction of airborne fuel pump based on combination of degradation data and life data[C]//2018 Prognostics and System Health Management Conference (PHM-Chongqing) . Piscataway: IEEE Press, 2018: 664-668.
    [22] ZHAO Q, JIA X, GUO B, et al. Real-time bayes estimation of residual life based on multisource information fusion[C]//2018 Prognostics and System Health Management Conference (PHM-Chongqing) . Piscataway: IEEE Press, 2018: 215-222.
    [23] ZHANG Y, JIA X, GUO B. Bayesian framework for satellite rechargeable lithium battery synthesizing bivariate degradation and lifetime data[J]. Journal of Central South University, 2018, 25(2): 418-431. doi: 10.1007/s11771-018-3747-2
    [24] 蔡忠义, 王泽洲, 张晓丰, 等. 隐含非线性退化设备的剩余寿命在线预测方法[J]. 系统工程与电子技术, 2020, 42(6): 1410-1416. doi: 10.3969/j.issn.1001-506X.2020.06.27

    CAI Z Y, WANG Z Z, ZHANG X F, et al. Online prediction method of remaining useful lifetime for implicit nonlinear degradation equipment[J]. Systems Engineering and Electronics, 2020, 42(6): 1410-1416(in Chinese). doi: 10.3969/j.issn.1001-506X.2020.06.27
    [25] 唐圣金, 郭晓松, 周召发, 等. 步进应力加速退化试验的建模与剩余寿命估计[J]. 机械工程学报, 2014, 50: 33-40.

    TANG S J, GUO X S, ZHOU Z F, et al. Step stress accelerated degradation process modeling and remaining useful life estimation[J]. Journal of Mechanical Engineering, 2014, 50: 33-40(in Chinese).
    [26] ZHAI Q, CHEN P, HONG L, et al. A random-effects Wiener degradation model based on accelerated failure time[J]. Reliability Engineering System Safety, 2018, 180: 94-103. doi: 10.1016/j.ress.2018.07.003
    [27] WANG D, ZHAO Y, YANG F, et al. Nonlinear-drifted Brownian motion with multiple hidden states for remaining useful life prediction of rechargeable batteries[J]. Mechanical Systems and Signal Processing, 2017, 93: 531-544. doi: 10.1016/j.ymssp.2017.02.027
    [28] WANG D, TSUI K L. Two novel mixed effects models for prognostics of rolling element bearings[J]. Mechanical Systems and Signal Processing, 2018, 99: 1-13. doi: 10.1016/j.ymssp.2017.06.004
    [29] SI X S, WANG W, CHEN M Y, et al. A degradation path-dependent approach for remaining useful life estimation with an exact and closed-form solution[J]. European Journal of Operational Research, 2013, 226(1): 53-66. doi: 10.1016/j.ejor.2012.10.030
    [30] TANG S, GUO X, ZHOU Z. Mis-specification analysis of linear Wiener process-based degradation models for the remaining useful life estimation[J]. Proceedings of the Institution of Mechanical Engineers, Part O:Journal of Risk and Reliability, 2014, 228(5): 478-487. doi: 10.1177/1748006X14533784
    [31] SI X S, WANG W B, HU C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process[J]. IEEE Transactions on Reliability, 2012, 61(1): 50-67. doi: 10.1109/TR.2011.2182221
    [32] WANG X, BALAKRISHNAN N, GUO B. Residual life estimation based on a generalized Wiener degradation process[J]. Reliability Engineering System Safety, 2014, 124: 13-23. doi: 10.1016/j.ress.2013.11.011
  • 加载中
图(20)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  25
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-23
  • 录用日期:  2022-02-16
  • 网络出版日期:  2022-03-01
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答