留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于两级滑模控制的多移动机器人映射领航编队控制策略

王晨阳 杨丽曼 李运华

王晨阳,杨丽曼,李运华. 基于两级滑模控制的多移动机器人映射领航编队控制策略[J]. 北京航空航天大学学报,2023,49(11):3108-3114 doi: 10.13700/j.bh.1001-5965.2021.0792
引用本文: 王晨阳,杨丽曼,李运华. 基于两级滑模控制的多移动机器人映射领航编队控制策略[J]. 北京航空航天大学学报,2023,49(11):3108-3114 doi: 10.13700/j.bh.1001-5965.2021.0792
WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0792
Citation: WANG C Y,YANG L M,LI Y H. A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3108-3114 (in Chinese) doi: 10.13700/j.bh.1001-5965.2021.0792

基于两级滑模控制的多移动机器人映射领航编队控制策略

doi: 10.13700/j.bh.1001-5965.2021.0792
基金项目: 国家自然科学基金(U1910211)
详细信息
    通讯作者:

    E-mail:ylm@buaa.edu.cn

  • 中图分类号: TP273

A mapping leader formation control strategy for multiple mobile robots based on two-stage sliding mode control

Funds: National Natural Science Foundation of China (U1910211)
More Information
  • 摘要:

    针对低通信负载下的多移动机器人编队控制进行研究。通过坐标变换和引入侧滑增量定义了非完整约束轮式移动机器人的运动学模型,显式满足纯滚动条件。提出领航编队控制策略,通过领航者对跟随者的单向通信和映射领航者规划,将系统编队问题转换为新模型下的分布式一致性控制问题。针对跟随者的转速与线速度设计了2级指数趋近滑模控制器,实现相对于领航者轨迹误差的快速收敛,并通过Lyapunov理论对控制器进行稳定性分析。数值仿真表明:所提策略可以满足多移动机器人队形保持和队形变换的任务要求,验证了理论分析的正确性和有效性。

     

  • 图 1  坐标变换示意图

    Figure 1.  Diagram of coordinate transformation

    图 2  期望编队队形

    Figure 2.  Desired formation pattern

    图 3  移动机器人编队运动轨迹

    Figure 3.  Formation trajectory of mobile robots

    图 4  移动机器人角速度

    Figure 4.  Angular velocity of mobile robots

    图 5  移动机器人速度

    Figure 5.  Velocity of mobile robots

    图 6  移动机器人航向角误差

    Figure 6.  Heading angle error of mobile robots

    图 7  跟随机器人与领航者x轴方向距离

    Figure 7.  X-axis distance between followers and leader

    图 8  跟随机器人与领航者y轴方向距离

    Figure 8.  Y-axis distance between followers and leader

    表  1  跟随机器人初始条件

    Table  1.   Initial conditions of followers

    跟随
    机器人$ i $
    位置坐标
    $ ({x_i}(0),{y_i}(0)) $/m
    航向角
    $ {\theta _i}(0) $/π rad
    速度
    $ {v_i}(0) $/(m·s−1)
    角速度
    $ {\omega _i}(0) $/(rad·s−1)
    1(2.3,−21)0.15−0.1
    2(−2.25,−20)0.054.50.05
    3(−2.25,−25)−0.053.50.35
    4(2.3,−24)−0.130.5
    下载: 导出CSV
  • [1] MICHAEL R, ALEJANDRO C, RADHIKA N. Programmable self-assembly in a thousand-robot swarm[J]. Science, 2014, 345(6198): 795-799. doi: 10.1126/science.1254295
    [2] RUAN W Y, DUAN H B. Multi-UAV obstacle avoidance control via multi-objective social learning pigeon-inspired optimization[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(5): 740-748. doi: 10.1631/FITEE.2000066
    [3] 张婷婷, 蓝羽石, 宋爱国. 无人集群系统自主协同技术综述[J]. 指挥与控制学报, 2021, 7(2): 127-136.

    ZHANG T T, LAN Y S, SONG A G. An overview of autonomous collaboration technologies for unmanned swarm systems[J]. Journal of Command and Control, 2021, 7(2): 127-136(in Chinese).
    [4] LORIA A, DASDEMIR J, ALVAREZ J N. Leader–follower formation and tracking control of mobile robots along straight paths[J]. IEEE Transactions on Control Systems Technology, 2016, 24(2): 727-732. doi: 10.1109/TCST.2015.2437328
    [5] 刘安东, 秦冬冬. 基于虚拟结构法的多移动机器人分布式预测控制[J]. 控制与决策, 2021, 36(5): 1273-1280.

    LIU A D, QIN D D. Distributed predictive control of multiple mobile robots based on virtual structure method[J]. Control and Decision, 2021, 36(5): 1273-1280(in Chinese).
    [6] LEE G, CHWA D. Decentralized behavior-based formation control of multiple robots considering obstacle avoidance[J]. Intelligent Service Robotics, 2018, 11(1): 127-138. doi: 10.1007/s11370-017-0240-y
    [7] MATOUI F, BOUSSAID B, ABDELKRIM M N. Distributed path planning of a multi-robot system based on the neighborhood artificial potential field approach[J]. Simulation, 2019, 95(7): 637-657. doi: 10.1177/0037549718785440
    [8] 胡凯, 陈旭, 杨平化, 等. 基于滑模变结构控制多机器人协同编队的研究综述[J]. 南京信息工程大学学报(自然科学版), 2022, 14(2): 197-211.

    HU K, CHEN X, YANG P H, et al. A review of cooperative formation of multiple robots based on sliding mode variable structure control[J]. Journal of Nanjing University of Information Science & Technology(Natural Science Edition), 2022, 14(2): 197-211(in Chinese).
    [9] PERRUQUETTI W, BARBOT J P. Sliding mode control in engineering[M]. New York: Marcel Dekker, 2002.
    [10] SLOTINE J J, SASTRY S S. Tracking control of non-linear systems using sliding surfaces with application to robot manipulators[J]. International Journal of Control, 1983, 38(2): 465-492. doi: 10.1080/00207178308933088
    [11] UTKIN V I, DRAKUNOV S V, HASHIMOTO H, et al. Robot path obstacle avoidance control via sliding mode approach[C] // IEEE/RSJ International Workshop on Intelligent Robots and Systems. Piscataway: IEEE Press, 1991: 1287-1290.
    [12] 林洁琼, 杨雪梅, 闫东, 等. 一种改进的双幂次指数趋近律的滑模变结构控制策略[J]. 长春工业大学学报, 2021, 42(3): 193-199.

    LIN J Q, YANG X M, YAN D, et al. An improved sliding mode variable structure control strategy for double power exponential approach law[J]. Journal of Changchun University of Technology, 2021, 42(3): 193-199(in Chinese).
    [13] DESAI J P, OSTROWSKI J P, KUMAR V. Modeling and control of formations of nonholonomic mobile robots[J]. IEEE Transactions on Robotics and Automation, 2001, 17(6): 905-908. doi: 10.1109/70.976023
    [14] DONG W. Tracking control of multiple-wheeled mobile robots with limited information of a desired trajectory[J]. IEEE Transactions on Robotics, 2012, 28(1): 262-268. doi: 10.1109/TRO.2011.2166436
    [15] 易国, 毛建旭, 王耀南, 等. 非完整移动机器人领航-跟随编队分布式控制[J]. 仪器仪表学报, 2017, 38(9): 2266-2272.

    YI G, MAO J X, WANG Y N, et al. Distributed control for leader-follower formation tracking of multiple nonholonomic vehicles[J]. Chinese Journal of Scientific Instrument, 2017, 38(9): 2266-2272(in Chinese).
    [16] 苏博, 王洪斌, 高静. 事件触发策略下多AUV抗干扰固定时间编队控制[J]. 控制理论与应用, 2021, 38(7): 1113-1123.

    SU B, WANG H B, GAO J. Anti-disturbance fixed-time formation control of multi-AUVs via event-triggered strategy[J]. Control Theory & Applications, 2021, 38(7): 1113-1123(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  31
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-03-09
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答