留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于快速仿射模板匹配的AMCL算法

张淑芳 李亚阳 张涛

张淑芳,李亚阳,张涛. 基于快速仿射模板匹配的AMCL算法[J]. 北京航空航天大学学报,2023,49(11):2898-2905 doi: 10.13700/j.bh.1001-5965.2022.0001
引用本文: 张淑芳,李亚阳,张涛. 基于快速仿射模板匹配的AMCL算法[J]. 北京航空航天大学学报,2023,49(11):2898-2905 doi: 10.13700/j.bh.1001-5965.2022.0001
ZHANG S F,LI Y Y,ZHANG T. Adaptive Monte Carlo localization algorithm based on fast affine template matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2898-2905 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0001
Citation: ZHANG S F,LI Y Y,ZHANG T. Adaptive Monte Carlo localization algorithm based on fast affine template matching[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2898-2905 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0001

基于快速仿射模板匹配的AMCL算法

doi: 10.13700/j.bh.1001-5965.2022.0001
详细信息
    通讯作者:

    E-mail:shufangzhang@tju.edu.cn

  • 中图分类号: V221+.3;TB553

Adaptive Monte Carlo localization algorithm based on fast affine template matching

More Information
  • 摘要:

    自主定位是移动机器人的重要任务,机器人绑架问题是定位技术中的难点。基于粒子滤波的自适应蒙特卡罗定位(AMCL)算法能够解决机器人绑架问题,但其在定位恢复过程中需要在全局地图中放入新粒子,恢复效率低。通过对自适应蒙特卡罗定位算法的研究,结合图像学中模板匹配思想,提出了一种基于快速仿射模板匹配的自适应蒙特卡罗定位(AMCL-FM)算法。该算法利用全局代价地图与局部代价地图估计出机器人的真实位置,并在估计出的位置放置新的粒子,提高定位恢复能力。与传统的自适应蒙特卡罗定位算法相比,所提算法定位精度提升了61.13%,定位恢复效率提升了69.23%。

     

  • 图 1  AMCL算法框图

    Figure 1.  Block diagram of AMCL algorithm

    图 2  AMCL-FM算法流程

    Figure 2.  Flow chart of AMCL-FM algorithm

    图 3  世界坐标系与图像坐标系

    Figure 3.  World coordinate system and pixel coordinate system

    图 4  机器人模型

    Figure 4.  Robot model

    图 5  实验环境

    Figure 5.  Experimental environment

    图 6  无绑架实验

    Figure 6.  No kidnapping experiment

    图 7  AMCL-FM算法定位结果

    Figure 7.  AMCL-FM positioning result

    图 8  定位恢复实验

    Figure 8.  Positioning recovery experiment

    图 9  定位轨迹对比

    Figure 9.  Comparison of positioning trajectory

    图 10  定位误差变化情况

    Figure 10.  Changes in positioning error

    图 11  真实室内实验环境

    Figure 11.  Real indoor experimental environment

    图 12  真实环境小车无绑架实验结果

    Figure 12.  Real environment car without kidnapping experiment results

    图 13  真实环境绑架实验过程

    Figure 13.  Process of kidnapping experiment in real environment

    图 14  真实环境绑架实验轨迹与误差

    Figure 14.  Trajectory and error of kidnapping experiment in real environment

    表  1  匹配度比较

    Table  1.   Match comparison

    算法名称 匹配度 平均值
    实验1 实验2 实验3 实验4 实验5
    AMCL 0.0705 0.0639 0.0628 0.0677 0.0721 0.0674
    AMCL-FM 0.023 0.025 0.029 0.021 0.033 0.0262
    下载: 导出CSV

    表  2  恢复定位所用时间

    Table  2.   Time to restore positioning s

    算法名称 恢复定位时间 平均值
    实验1 实验2 实验3 实验4 实验5
    AMCL 2.7 2.8 2.3 2.5 2.7 2.6
    AMCL-FM 0.6 0.9 0.7 0.8 1.0 0.8
    下载: 导出CSV
  • [1] 刘明阳, 郑晨, 张昂, 等. 一种轮式机器人轨迹跟踪控制算法的研究[J]. 现代导航, 2020, 11(4): 268-271. doi: 10.3969/j.issn.1674-7976.2020.04.007

    LIU M Y, ZHENG C, ZHANG A, et al. Research on a wheeled robot tracking control algorithm[J]. Modern Navigation, 2020, 11(4): 268-271(in Chinese). doi: 10.3969/j.issn.1674-7976.2020.04.007
    [2] 张立志, 陈殿生, 刘维惠. 基于混合地图的护理机器人室内导航方法[J]. 北京航空航天大学学报, 2018, 44(5): 991-1000. doi: 10.13700/j.bh.1001-5965.2017.0325

    ZHANG L Z, CHEN D S, LIU W H. Care robot indoor navigation method based on hybrid map[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(5): 991-1000(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0325
    [3] BUKHORI I, ISMAIL Z H, NAMERIKAWA T. Detection strategy for kidnapped robot problem in landmark-based map Monte Carlo localization[C]//Proceedings of the IEEE International Symposium on Robotics and Intelligent Sensors. Langkawi: IRIS, 2015: 75-80.
    [4] FOX D, BURGARD W, KRUPPA H, et al. A probabilistic approach to collaborative multi-robot localization[J]. Autonomous Robots, 2000, 8(3): 325-344. doi: 10.1023/A:1008937911390
    [5] BLOK P M, BOHEEMEN K V, EVERT F V, et al. Robot navigation in orchards with localization based on particle filter and Kalman filter[J]. Computers and Electronics in Agriculture, 2019, 157: 261-269. doi: 10.1016/j.compag.2018.12.046
    [6] BACCA B, SALVI J, CUFÍ X. Long-term mapping and localization using feature stability histograms[J]. Robotics and Autonomous Systems, 2013, 61(12): 1539-1558. doi: 10.1016/j.robot.2013.07.003
    [7] KARKUS P, HSU D, LEE W S. Particle filter networks: End-to-end probabilistic localization from visual observations[EB/OL]. (2018-10-25)[2022-01-01]. https://arxiv.org/abs/1805.08975v1.
    [8] ZHANG L, ZAPATA R, LEPIBAY P. Self-adaptive Monte Carlo for single-robot and multi-robot localization[C]//Proceedings of the IEEE International Conference on Automation and Logistics. Piscataway: IEEE Press, 2009: 1927-1933.
    [9] CHEN R, YIN H, JIAO Y, et al. Deep samplable observation model for global localization and kidnapping[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2296-2303. doi: 10.1109/LRA.2021.3061339
    [10] AKAI N, HIRAYAMA T, MURASE H. Hybrid localization using model-and learning-based methods: Fusion of Monte Carlo and E2E localizations via importance sampling[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2020: 6469-6475.
    [11] CHUNG M A, LIN C W. An improved localization of mobile robotic system based on AMCL algorithm[J]. IEEE Sensors Journal, 2021, 22(1): 900-908.
    [12] 冯佳萌, 裴东, 邹勇, 等. 基于机器人激光定位的一种改进AMCL算法[J]. 激光与光电子学进展, 2021, 58(20): 2028003.

    FENG J M, PEI D, ZOU Y, et al. An improved AMCL algorithm based on robot laser localization[J]. Laser & Optoelectronics Progress, 2021, 58(20): 2028003(in Chinese).
    [13] GE G, ZHANG Y, WANG W, et al. Text-MCL: Autonomous mobile robot localization in similar environment using text-level semantic information[J]. Machines, 2022, 10(3): 169. doi: 10.3390/machines10030169
    [14] JIA D, CAO J, SONG W, et al. Colour FAST (CFAST) match: Fast affine template matching for colour images[J]. Electronics Letters, 2016, 52(14): 1220-1221. doi: 10.1049/el.2016.1331
    [15] THRUN S, BURGARD W, FOX D. 概率机器人[M]. 曹红玉, 谭志, 史晓霞, 等译. 北京: 机械工业出版社, 2017: 187-203.

    THRUN S, BURGARD W, FOX D. Probabilistic robotics[M]. CAO H Y, TAN Z, SHI X X, et al, translated. Beijing: Machinery Industry Press, 2017: 187-203(in Chinese).
    [16] GRISETTI G, STACHNISS C, BURGARD W. Improved techniques for grid mapping with Rao-Blackwellized particle filters[J]. IEEE Transactions on Robotics, 2007, 23(1): 34-46. doi: 10.1109/TRO.2006.889486
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  162
  • HTML全文浏览量:  504
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-04
  • 录用日期:  2022-04-23
  • 网络出版日期:  2022-05-10
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答