留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变转速负载敏感进出口独立控制系统特性研究

李泽龙 岳路宏 杨敬

李泽龙,岳路宏,杨敬. 变转速负载敏感进出口独立控制系统特性研究[J]. 北京航空航天大学学报,2023,49(11):3132-3144 doi: 10.13700/j.bh.1001-5965.2022.0011
引用本文: 李泽龙,岳路宏,杨敬. 变转速负载敏感进出口独立控制系统特性研究[J]. 北京航空航天大学学报,2023,49(11):3132-3144 doi: 10.13700/j.bh.1001-5965.2022.0011
LI Z L,YUE L H,YANG J. Research on characteristics of variable speed load sensitive inlet and outlet independent control system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3132-3144 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0011
Citation: LI Z L,YUE L H,YANG J. Research on characteristics of variable speed load sensitive inlet and outlet independent control system[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3132-3144 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0011

变转速负载敏感进出口独立控制系统特性研究

doi: 10.13700/j.bh.1001-5965.2022.0011
基金项目: 国家重点研发计划(2018YFB2001203);国家自然科学基金-山西煤基低碳联合基金(U1910211);山西省重点研发计划(201903D111007)
详细信息
    通讯作者:

    E-mail:yangjing001@tyut.edu.cn

  • 中图分类号: TH137

Research on characteristics of variable speed load sensitive inlet and outlet independent control system

Funds: National Key R & D Program of China (2018YFB2001203); National Natural Science Foundation of China Shanxi Coal-based Low Carbon Joint Fund (U1910211); Key R & D Program of Shanxi Province (201903D111007)
More Information
  • 摘要:

    针对泵控位置系统效率高但控制精度不足、阀控位置系统响应快但能耗损失较大的问题,提出了基于模式切换下变转速负载敏感进出口独立的控制系统,设计了针对工程机械中能耗损失大的阻滞型负载工况的控制策略。根据所提控制系统原理,建立变转速负载敏感进出口独立控制系统的数学模型;分别搭建基于加载油缸的变转速负载敏感泵控系统和空载油缸的进出口独立阀控系统的试验平台与AMESim-MATLAB仿真模型并进行分析研究;将所建系统模型中添加正弦和随机信号来模拟变化的负载,分析系统在应对变化的外负载时,位置与压力的控制效果。将所建系统与恒流阀控系统、传统负载敏感阀控系统、传统泵控系统三者进行比较分析,结果表明:所设计变转速负载敏感压力控制器对系统压力的控制效果良好;以伺服电机驱动双作用叶片泵作为动力源的负载敏感进出口独立控制系统的位置控制性能和节能效果高于传统泵控和阀控系统,比传统泵控系统节能10.12%。

     

  • 图 1  系统控制原理

    Figure 1.  System control principle

    图 2  变转速负载敏感泵控系统控制原理框图

    Figure 2.  Control principle block diagram of variable speed load sensitive pump-controlled pressure system

    图 3  变转速负载敏感泵控系统联合仿真

    Figure 3.  Co-simulation of variable speed load sensitive pump-controlled system

    图 4  变转速负载敏感泵控系统试验平台

    Figure 4.  Variable speed load sensitive control system test bench

    图 5  泵出口压力与腔室压力

    Figure 5.  Pump outlet pressure and chamber pressure

    图 6  变化负载下泵出口压与无杆腔压力

    Figure 6.  Pump outlet pressure and non-rod chamber under varying loads

    图 7  模式切换控制策略

    Figure 7.  Mode switching control strategy

    图 8  基于模式切换的变转速负载敏感进出口独立阀控系统控制框图

    Figure 8.  Control frame of variable speed load sensitive inlet and outlet independent control system based on mode switching

    图 9  不同控制参数下目标位移与实际位移

    Figure 9.  Target displacement and actual displacement under different control parameters

    图 10  基于模式切换的变转速负载敏感进出口独立阀控系统联合仿真

    Figure 10.  Co-simulation of based on mode switching

    图 11  变转速负载敏感进出口独立阀控系统试验平台

    Figure 11.  Construction of position control test platform

    图 12  试验与仿真位移曲线和压力曲线

    Figure 12.  Test and simulation displacement pressure curve

    图 13  正弦负载信号系统特性

    Figure 13.  System characteristics of sinusoidal load signal

    图 14  随机负载信号系统特性

    Figure 14.  Random load signal system characteristics

    图 15  本文系统与传统控制系统对比

    Figure 15.  Comparison between the proposed system and traditional control system

    表  1  试验参数

    Table  1.   Test parameters

    参数数值
    液压缸缸筒直径/mm280
    液压缸活塞直径/mm220
    液压缸活塞行程/mm200
    控制系统伺服电机额定功率/kW4.5
    控制系统伺服电机额定转速/(r·min−1)1800
    控制系统定量叶片泵排量/(ml·r−1)25
    控制系统比例阀额定流量/(L·mm−1)60
    加载系统电机额定功率/kW15
    加载系统电机额定转速/(r·min−1)1700
    加载系统定量叶片泵排量/(ml·r−1)25
    下载: 导出CSV

    表  2  控制缸参数

    Table  2.   Control cylinder parameters mm

    工作装置参数数值
    液压缸缸筒直径80
    液压缸活塞直径45
    液压缸活塞行程480
    下载: 导出CSV
  • [1] 刘华, 汪成文, 郭新平, 等. 电液负载敏感位置伺服系统自抗扰控制方法[J]. 北京航空航天大学学报, 2020, 46(11): 2131-2139.

    LIU H, WANG C W, GUO X P, et al. Active disturbance rejection control method for position servo system based on electro-hydraulic load sensing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(11): 2131-2139(in Chinese).
    [2] SHEN W, PANG Y, JIANG J H. Robust controller design of integrated direct drive volume control architecture for steering systems[J]. ISA Transactions, 2018, 78: 116-192.
    [3] 袁士豪, 殷晨波, 刘世豪. 机械负载敏感定量泵系统性能分析[J]. 农业工程学报, 2013, 29(13): 38-45.

    YUAN S H, YIN C B, LIU S H. Performance analysis of machinery load sensitive quantitative pump system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(13): 38-45(in Chinese).
    [4] IMAMURA T, SAWADA Y, ICHIKAWA M, et al. Energy-saving hybrid hydraulic system comprising highly efficient IPM motor and inverter, for injection molding and manufacturing machine[J]. Proceedings of the JFPS International Symposium on Fluid Power, 2008, 2008(7-1): 117-120. doi: 10.5739/isfp.2008.117
    [5] 谢文. 串联式泵阀协控电液伺服控制系统研究[D]. 北京: 北京理工大学, 2015: 31-37

    XIE W. Research on serial type pump-valve coordinated electric-hydraulic servo control system[D]. Beijing: Beijing Institute of Technology, 2015: 31-37(in Chinese).
    [6] 张哲. 基于变频调节的快锻液压机泵阀复合控制研究[D]. 秦皇岛: 燕山大学, 2014: 36-40.

    ZHANG Z. The study on accumulator fast forging subsystem of 0.6MN sinusoidal pump-controllde press[D]. Qinhuangdao: Yanshan University, 2014: 36-40(in Chinese).
    [7] 付胜杰, 林添良, 王浪, 等. 基于变转速控制的负载敏感系统研究[J]. 中国公路学报, 2020, 33(5): 189-196.

    FU S J, LIN T L, WANG L, et al. Load sensitive system based on variable speed control[J]. China Journal of Highway and Transport, 2020, 33(5): 189-196(in Chinese).
    [8] 梁涛. 变转速动力源及容腔独立控制液压挖掘机特性研究[D]. 太原: 太原理工大学, 2018: 11-12

    LIANG T. Research on characteristics of hydraulic excavator with speed variable power source and separate chamber control system[D]. Taiyuan: Taiyuan University of Technology, 2018: 11-12(in Chinese).
    [9] 张红娟, 权龙, 李斌. 注塑机电液控制系统能量效率对比研究[J]. 机械工程学报, 2012, 48(8): 180-187.

    ZHANG H J, QUAN L, LI B. Comparative study on energy efficiency of the electro-hydraulic control system in injection molding machine[J]. Journal of Mechanical Engineering, 2012, 48(8): 180-187(in Chinese).
    [10] BACKE W. Design systematics and performance of cartridge valve controls[C]//International Conference on Fluid Power, Tampere: ICFP, 1987: 1-48.
    [11] CHOI K, SEO J, NAM Y, et al. Energy-saving in excavators with application of independent metering valve[J]. Journal of Mechanical Science and Technology, 2015, 29(1): 387-395. doi: 10.1007/s12206-014-1245-5
    [12] 师建鹏, 权龙, 张晓刚, 等. 进出口独立复合控制挖掘机的动臂速度位置特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1797-1807.

    SHI J P, QUAN L, ZHANG X G, et al. Velocity and position characteristics of excavator’s boom by separate meter-in and meter-out compound control[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(9): 1797-1807(in Chinese).
    [13] 董致新, 黄伟男, 葛磊, 等. 泵阀复合进出口独立控制液压挖掘机特性研究[J]. 机械工程学报, 2016, 52(12): 173-180. doi: 10.3901/JME.2016.12.173

    DONG Z X, HUANG W N, GE L, et al. Research on the performance of hydraulic excavator with pump and valve combined separate meter in and meter out circuits[J]. Journal of Mechanical Engineering, 2016, 52(12): 173-180(in Chinese). doi: 10.3901/JME.2016.12.173
    [14] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.

    DING R Q, XU B, ZHANG J H. Coupling property of pressure and velocity compound control in individual metering systems[J]. Journal of Zhejiang University(Engineering Science), 2017, 51(6): 1126-1134(in Chinese).
    [15] 张鹏, 郭志军. 节流独立控制负载敏感液压系统特性及其仿真分析[J]. 液压与气动, 2021, 45(4): 82-86.

    ZHANG P, GUO Z J. Characteristics and simulation analysis of load sensitive hydraulic system with independent throttle control[J]. Chinese Hydraulics & Pneumatics, 2021, 45(4): 82-86(in Chinese).
    [16] 刘凯磊, 李宇, 康绍鹏, 等. 挖掘机工作装置负载口独立控制系统节能特性研究[J]. 液压与气动, 2021, 45(3): 86-93. doi: 10.11832/j.issn.1000-4858.2021.03.012

    LIU K L, LI Y, KANG S P, et al. Energy saving characteristics of independent metering control system of excavator working equipment[J]. Chinese Hydraulics & Pneumatics, 2021, 45(3): 86-93(in Chinese). doi: 10.11832/j.issn.1000-4858.2021.03.012
    [17] 李小军. 双作用叶片泵的内部结构对流量脉动及其噪声的影响分析[D]. 兰州: 兰州理工大学, 2016: 15-16

    LI X J. Analysis of the influence of the internal structure of the double acting vane pump on the flow pulsation and noise[D]. Lanzhou: Lanzhou University of Technology, 2016: 15-16(in Chinese).
    [18] IEC. Programmable controllers-part 3: Programming languages: IEC61131—3[S]. Geneva: IEC, 2013.
    [19] MERRITT H E. Hydraulic control systems[M]. New York: John Wiley & Sons, 1967: 90-100.
    [20] DJUROVIC M, HELDUSER S. New control strategies for electrohydraulic load-sensing[C]//Bath Workshop on Power Transmission and Motion Control. Dresden: Professional Engineering Publishing, 2004: 201.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  27
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 录用日期:  2022-03-18
  • 网络出版日期:  2022-05-16
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答