留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进终端SMC和SMO的SRM瞬时转矩控制

凌辉 杜钦君 庞浩 杨姝欣 赵正阳 李存贺

凌辉,杜钦君,庞浩,等. 基于改进终端SMC和SMO的SRM瞬时转矩控制[J]. 北京航空航天大学学报,2023,49(11):3145-3155 doi: 10.13700/j.bh.1001-5965.2022.0021
引用本文: 凌辉,杜钦君,庞浩,等. 基于改进终端SMC和SMO的SRM瞬时转矩控制[J]. 北京航空航天大学学报,2023,49(11):3145-3155 doi: 10.13700/j.bh.1001-5965.2022.0021
LING H,DU Q J,PANG H,et al. Instantaneous torque control of SRM based on improved terminal SMC and SMO[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3145-3155 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0021
Citation: LING H,DU Q J,PANG H,et al. Instantaneous torque control of SRM based on improved terminal SMC and SMO[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3145-3155 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0021

基于改进终端SMC和SMO的SRM瞬时转矩控制

doi: 10.13700/j.bh.1001-5965.2022.0021
基金项目: 国家自然科学基金(62076152);山东省自然科学基金(ZR2020MF096);山东省科技型中小企业创新能力提升工程项目(2021TSGC1109)
详细信息
    通讯作者:

    E-mail:duqinjun@sdut.edu.cn

  • 中图分类号: TM352

Instantaneous torque control of SRM based on improved terminal SMC and SMO

Funds: National Natural Science Foundation of China (62076152); Shandong Provincial Natural Science Foundation (ZR2020MF096); Innovation Ability Promotion Project of Science and Technology SMEs in Shandong Province (2021TSGC1109)
More Information
  • 摘要:

    针对开关磁阻电机(SRM)常规终端滑模控制器(SMC)响应速度慢和传统滑模观测器(SMO)存在的抖振问题,提出一种基于改进终端SMC和变速趋近律SMO的SRM瞬时转矩控制(DITC)方法。设计了电机速度误差可快速收敛的改进非奇异快速终端滑模面和可自适应调整趋近律速度的变速幂次趋近律,利用等效控制法,得出了连续非奇异控制律。通过Lyapunov函数证明了该系统的稳定性和有限时间收敛性。设计了变速趋近律SMO以实现SRM无位置传感器控制。采用双曲正切函数作为切换函数,并引入快速幂次趋近律作为SMO速度观测的趋近律,克服了传统SMO固定开关增益带来的抖振和收敛速度问题。通过Lyapunov函数证明了SMO运行的稳定性。仿真和实验验证了所提方法的有效性。结果表明:与常规终端SMC相比,改进终端SMC能够在0.07 s内实现对期望转速的跟踪,调节时间减少了0.04 s,并且系统稳定时转速波动降低了0.5 r/min,具有更好的响应速度和稳定性。在负载突增时,系统转速可在0.02 s内调节至给定值,恢复时间减少了0.05 s,具有更好的调节性能。变速趋近律SMO能够在0.01 s内实现转速估计误差的收敛,且误差波动维持在2 r/min以内,可实现电机转速和转子位置的准确估计。

     

  • 图 1  SRM-DITC系统框图

    Figure 1.  Block diagram of SRM-DITC system

    图 2  不对称半桥的开关状态

    Figure 2.  Switching states of asymmetrical half bridge

    图 3  扇区划分

    Figure 3.  Sector division

    图 4  磁链特性曲线

    Figure 4.  Characteristic curve of magnetic chain

    图 5  变速趋近律滑模观测器原理

    Figure 5.  Principle of sliding mode observer with variable speed convergence law

    图 6  基于改进终端滑模控制器和变速趋近律滑模观测器的SRM瞬时转矩控制系统

    Figure 6.  Instantaneous torque control system of SRM based on improved terminal sliding model controller and SMO with variable speed convergence law

    图 7  转速曲线对比

    Figure 7.  Comparison of rotate speed curves

    图 8  转速误差曲线对比

    Figure 8.  Comparison of rotate speed error curves

    图 9  稳态转矩曲线对比

    Figure 9.  Comparison of steady state torque curves

    图 10  突加负载时转速曲线对比

    Figure 10.  Comparison of rotate speed curves under sudden load

    图 11  突加负载时转矩曲线对比

    Figure 11.  Comparison of torque curves under sudden load

    图 12  传统滑模观测器转速估计曲线

    Figure 12.  Speed estimation curve of traditional SMO

    图 13  变速趋近律滑模观测器转速估计曲线

    Figure 13.  Speed estimation curve of SMO with variable speed convergence law

    图 14  变速趋近律滑模观测器位置估计曲线

    Figure 14.  Position estimation curve of SMO with variable speed convergence law

    图 15  变速趋近律滑模观测器位置估计误差

    Figure 15.  Error of position estimation of SMO with variable speed convergence law

    图 16  实验平台

    Figure 16.  Experimental platform

    图 17  电机加速的瞬态过程

    Figure 17.  Transient process of motor acceleration

    图 18  转子位置波形

    Figure 18.  Rotor position waveform

    表  1  电压矢量表

    Table  1.   Voltage vector table

    区间ΔT >内滞环
    上限
    ΔT >外滞环
    上限
    ΔT <内滞环
    下限
    ΔT <外滞环
    下限
    N=1(−1,0,1,−1)(−1,1,1,−1)(−1,0,0,−1)(−1,−1,0,−1)
    N=2(−1,−1,1,−1)(−1,−1,0,−1)
    N=3(−1,−1,0,1)(−1,−1,1,1)(−1,−1,0,0)(−1,−1,−1,0)
    N=4(−1,−1,−1,1)(−1,−1,−1,0)
    N=5(1,−1,−1,0)(1,−1,−1,1)(0,−1,1,0)(0,−1,−1,−1)
    N=6(1,−1,−1,−1)(0,−1,−1,−1)
    N=7(0,1,−1,−1)(1,1,−1,−1)(0,0,−1,−1)(−1,0,−1,−1)
    N=8(−1,1,−1,−1)(−1,0,−1,−1)
     注:ΔT为转矩误差。
    下载: 导出CSV

    表  2  电机参数

    Table  2.   Motor parameters

    参数数值
    额定功率/kW1.5
    额定转速/(r·min−1)1500
    额定转矩/(N·m)9.55
    转动惯量/(kg·m2)0.0082
    摩擦系数/((N·m)(rad·s−1)−1)0.01
    开通角/(°)35
    关断角/(°)57.5
    下载: 导出CSV
  • [1] 王宏华. 开关磁阻电动机调速控制技术[M]. 2版. 北京: 机械工业出版社, 2014: 7-8, 31-33.

    WANG H H. Speed control technology of switched reluctance motor[M]. 2nd ed. Beijing: China Machine Press, 2014: 7-8, 31-33(in Chinese).
    [2] 朱叶盛, 章国宝, 黄永明. 基于PWM的开关磁阻电机直接瞬时转矩控制[J]. 电工技术学报, 2017, 32(7): 31-39.

    ZHU Y S, ZHANG G B, HUANG Y M. PWM-based direct instantaneous torque control of switched reluctance machine[J]. Transactions of China Electrotechnical Society, 2017, 32(7): 31-39(in Chinese).
    [3] 夏长亮, 修杰. 基于RBF神经网络非线性预测模型的开关磁阻电机自适应PID控制[J]. 中国电机工程学报, 2007, 27(3): 57-62. doi: 10.3321/j.issn:0258-8013.2007.03.011

    XIA C L, XIU J. RBF ANN nonlinear prediction model based adaptive PID control of switched reluctance motor[J]. Proceedings of the CSEE, 2007, 27(3): 57-62(in Chinese). doi: 10.3321/j.issn:0258-8013.2007.03.011
    [4] 匡斯建, 张小平, 刘苹, 等. 基于相电感非饱和区定位的开关磁阻电机无位置传感器控制方法[J]. 电工技术学报, 2020, 35(20): 4296-4305.

    KUANG S J, ZHANG X P, LIU P, et al. Sensorless control method for switched reluctance motors based on locations of phase inductance characteristic points[J]. Transactions of China Electrotechnical Society, 2020, 35(20): 4296-4305(in Chinese).
    [5] 昝小舒, 陈昊. 基于自抗扰控制的开关磁阻电机转速闭环性能[J]. 电工技术学报, 2012, 27(7): 17-25.

    ZAN X S, CHEN H. Rotating speed closed loop study of switched reluctance motor based on auto disturbance rejection control[J]. Transactions of China Electrotechnical Society, 2012, 27(7): 17-25(in Chinese).
    [6] SHI T N, XIA C L, WANG M C, et al. Single neural PID control for sensorless switched reluctance motor based on RBF neural network[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation. Piscataway: IEEE Press, 2006: 8069-8073.
    [7] 刘勇智, 鄯成龙, 林博闻, 等. 基于自适应二阶终端滑模的SRM直接转矩控制[J]. 北京航空航天大学学报, 2018, 44(10): 2043-2051.

    LIU Y Z, SHAN C L, LIN B W, et al. Direct torque control of switched reluctance motor based on adaptive second-order terminal sliding mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2043-2051(in Chinese).
    [8] LIN C. Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks[J]. IEEE Transactions on Fuzzy Systems, 2006, 14(6): 849-859. doi: 10.1109/TFUZZ.2006.879982
    [9] YANG L, YANG J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865-1879. doi: 10.1002/rnc.1666
    [10] XU S S, CHEN C, WU Z. Study of nonsingular fast terminal sliding-mode fault-tolerant control[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3906-3913.
    [11] LIAN S K, MENG W, LIN Z M, et al. Adaptive attitude control of a quadrotor using fast nonsingular terminal sliding mode[J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 1597-1607. doi: 10.1109/TIE.2021.3057015
    [12] QIAO L, ZHANG W D. Adaptive second-order fast nonsingular terminal sliding mode tracking control for fully actuated autonomous underwater vehicles[J]. IEEE Journal of Oceanic Engineering, 2019, 44(2): 363-385. doi: 10.1109/JOE.2018.2809018
    [13] 刘金琨. 滑模变结构控制MATALB仿真[M]. 4版. 北京: 清华大学出版社, 2019: 38-39.

    LIU J K. Sliding mode control and MATALB simulation[M]. 4th ed. Beijing: Tsinghua University Press, 2019: 38-39(in Chinese).
    [14] 高洁, 王华宇, 徐萌. 开关磁阻电机的分数阶终端滑模控制[J]. 电机与控制学报, 2022, 26(2): 142-150.

    GAO J, WANG H Y, XU M. Improved terminal sliding mode control strategy of switched reluctance motor based on fractional calculus[J]. Electric Machines and Control, 2022, 26(2): 142-150(in Chinese).
    [15] 李慧洁, 蔡远利. 基于双幂次趋近律的滑模控制方法[J]. 控制与决策, 2016, 31(3): 498-502.

    LI H J, CAI Y L. Sliding mode control with double power reaching law[J]. Control and Decision, 2016, 31(3): 498-502(in Chinese).
    [16] YU S H, YU X H, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11): 1957-1964. doi: 10.1016/j.automatica.2005.07.001
    [17] 李逃昌. 基于新型趋近律的非线性积分滑模控制方法[J]. 控制工程, 2019, 26(11): 2031-2035.

    LI T C. Nonlinear integral sliding mode control method based on new reaching law[J]. Control Engineering of China, 2019, 26(11): 2031-2035(in Chinese).
    [18] 冒建亮, 李奇, 朱海荣. 多源扰动下光电跟踪系统连续非奇异终端滑模控制[J]. 控制理论与应用, 2017, 34(4): 413-423.

    MAO J L, LI Q, ZHU H R. Continuous nonsingular terminal sliding mode control of optical-electronic tracking system subject to multiple disturbances[J]. Control Theory & Applications, 2017, 34(4): 413-423(in Chinese).
    [19] 周永勤, 王旭东, 张玉光, 等. 开关磁阻电机模糊滑模观测器间接位置检测[J]. 电机与控制学报, 2013, 17(6): 57-63. doi: 10.3969/j.issn.1007-449X.2013.06.009

    ZHOU Y Q, WANG X D, ZHANG Y G, et al. Sensorless detection technique on fuzzy sliding mode observer for SRM[J]. Electric Machines and Control, 2013, 17(6): 57-63(in Chinese). doi: 10.3969/j.issn.1007-449X.2013.06.009
    [20] 吕德刚, 李子豪. 表贴式永磁同步电机改进滑模观测器控制[J]. 电机与控制学报, 2021, 25(10): 58-66.

    LÜ D G, LI Z H. Improved sliding mode observer control of surface mounted permanent magnet synchronous motor[J]. Electric Machines and Control, 2021, 25(10): 58-66(in Chinese).
    [21] CHEOK A D, FUKUDA Y. A new torque and flux control method for switched reluctance motor drives[J]. IEEE Transactions on Power Electronics, 2002, 17(4): 543-557. doi: 10.1109/TPEL.2002.800968
    [22] 李鹏, 马建军, 郑志强. 采用幂次趋近律的滑模控制稳态误差界[J]. 控制理论与应用, 2011, 28(5): 619-624.

    LI P, MA J J, ZHENG Z Q. Sliding mode control approach based on nonlinear integrator[J]. Control Theory & Applications, 2011, 28(5): 619-624(in Chinese).
    [23] 冒建亮, 李奇, 朱海荣. 一种连续非奇异快速终端滑模控制方法[J]. 控制与决策, 2016, 31(10): 1873-1878.

    MAO J L, LI Q, ZHU H R. A continuous nonsingular fast terminal sliding mode control method[J]. Control and Decision, 2016, 31(10): 1873-1878(in Chinese).
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  118
  • HTML全文浏览量:  36
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 录用日期:  2022-02-28
  • 网络出版日期:  2022-03-12
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答