留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于主动切换逻辑的涡扇发动机N-dot控制方法

李宇琛 李秋红 张新晟 庞淑伟 张永亮

李宇琛,李秋红,张新晟,等. 基于主动切换逻辑的涡扇发动机N-dot控制方法[J]. 北京航空航天大学学报,2023,49(11):3156-3166 doi: 10.13700/j.bh.1001-5965.2022.0022
引用本文: 李宇琛,李秋红,张新晟,等. 基于主动切换逻辑的涡扇发动机N-dot控制方法[J]. 北京航空航天大学学报,2023,49(11):3156-3166 doi: 10.13700/j.bh.1001-5965.2022.0022
LI Y C,LI Q H,ZHANG X S,et al. N-dot control method of turbofan engine based on active switching logic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3156-3166 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0022
Citation: LI Y C,LI Q H,ZHANG X S,et al. N-dot control method of turbofan engine based on active switching logic[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3156-3166 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0022

基于主动切换逻辑的涡扇发动机N-dot控制方法

doi: 10.13700/j.bh.1001-5965.2022.0022
基金项目: 国家科技重大专项(2017-V-0004-0054,J2019-I-0010-0010)
详细信息
    通讯作者:

    E-mail:lqh203@nuaa.edu.cn

  • 中图分类号: V2337

N-dot control method of turbofan engine based on active switching logic

Funds: National Science and Technology Major Project (2017-V-0004-0054,J2019-I-0010-0010)
More Information
  • 摘要:

    为提升涡扇发动机的加速性能,对传统的转子加速度N-dot控制结构进行了改进,提出了一种基于跟踪误差的主动切换控制策略,在跟踪误差较大时,执行N-dot控制回路,否则执行稳态控制回路。同时提出了基于等高度线的N-dot控制计划制定方法,采用差分进化算法对加速过程进行优化,最大限度地减小与最大转速之间的误差。以优化出的不同高度下最大高压转子加速度作为N-dot控制计划,并采用紧格式动态线性化无模型自适应控制(CFDL-MFAC)算法设计N-dot控制器。与常规Min-Max选择结构下的PID控制N-dot相比,主动切换MFAC的N-dot控制在某中等推力军用涡扇发动机设计点上加速时间减小了0.7 s,在非设计点上加速减少了约1.2 s。

     

  • 图 1  第2 s时最优指标随进化代数变化曲线

    Figure 1.  Curve of optimal index with evolutionary generation at 2 s

    图 2  H=0,Ma=0下最优控制序列

    Figure 2.  Optimal control sequence at H=0,Ma=0

    图 3  Tt2=288.15 K时高压转子在不同高度下的响应对比

    Figure 3.  Response comparison of high pressure rotor at different heights at Tt2=288.15 K

    图 4  H=0时不同飞行速度下的仿真响应比较

    Figure 4.  Comparison of simulation responses at different flight speeds at H=0

    图 5  N-dot控制回路和稳态控制回路的集成

    Figure 5.  integration of N-dot control circuit and steady-state control circuit

    图 6  2种控制器在飞行条件(H=0,Ma=0)下的仿真响应比较

    Figure 6.  Comparison of simulation responses of two controllers under flight conditions (H=0, Ma=0)

    图 7  2种控制器在飞行条件(H=8 km,Ma=1.2)下的仿真响应比较

    Figure 7.  Comparison of simulation responses of two controllers under flight conditions (H=8 km,Ma=1.2)

    表  1  不同高度下的最大加速度

    Table  1.   Maximum acceleration at different heights

    H/kmMaTt2/KMax Nc/((r·min−1)·s−1)
    00288.152103
    30.6025288.151776
    81.0493288.151546
    121.2846288.151270
    151.2846288.15945
    下载: 导出CSV

    表  2  控制律初始参数

    Table  2.   Initial parameters of control low

    $ {\phi _{\text{c}}} $$ \lambda $$ \rho $$ \eta $$ \mu $
    0.01500.0091.010
    下载: 导出CSV
  • [1] 樊思齐. 航空发动机控制[M]. 西安: 西北工业大学出版社, 2008: 235-271.

    FAN S Q. Aeroengine control[M]. Xi’an: Northwestern Polytechnical University Press, 2008: 235-271(in Chinese).
    [2] SPANG H A, BROWN H. Control of jet engines[J]. Control Engineering Practice, 1999, 7(9): 1043-1059. doi: 10.1016/S0967-0661(99)00078-7
    [3] CSANK J, MAY R, LITT J, et al. Control design for a generic commercial aircraft engine: AIAA-2010-6629[R]. Reston: AIAA, 2010.
    [4] CSANK J T, ZINNECKER A M. Tool for turbine engine closedloop transient analysis (TTECTrA) users’guide: NASA-TM-2014-216663[R]. Washington, D.C.: NASA, 2014: 1-31.
    [5] 王曦, 党伟, 李志鹏, 等. 1种N-dot过渡态PI控制律的设计方法[J]. 航空发动机, 2015, 41(6): 1-5.

    WANG X, DANG W, LI Z P, et al. A design method of N-dot transient state PI control laws[J]. Aeroengine, 2015, 41(6): 1-5(in Chinese).
    [6] 黄浏, 殷锴, 杨文博, 等. 基于N-dot的涡扇发动机加速控制器设计[J]. 航空发动机, 2017, 43(5): 26-30.

    HUANG L, YIN K, YANG W B, et al. Design of acceleration controller to a turbofan engine using N-dot method[J]. Aeroengine, 2017, 43(5): 26-30(in Chinese).
    [7] 杨帆, 彭凯, 王伟, 等. 辅助动力装置N-Dot加速控制研究及试车验证[J]. 燃气涡轮试验与研究, 2020, 33(3): 13-16.

    YANG F, PENG K, WANG W, et al. Research and testing verification of N-Dot acceleration control for an auxiliary power unit[J]. Gas Turbine Experiment and Research, 2020, 33(3): 13-16(in Chinese).
    [8] 姚太克, 闻伟, 杨刚, 等. 一种涡扇发动机加减速转速变化率闭环控制技术[J]. 推进技术, 2020, 41(6): 1404-1410.

    YAO T K, WEN W, YANG G, et al. Control law design for N-dot closed control loop for acceleration and deceleration process in turbofan engine[J]. Journal of Propulsion Technology, 2020, 41(6): 1404-1410(in Chinese).
    [9] 刘子赫, 郑前钢, 刘明磊, 等. 涡扇发动机全包线加速控制计划改进方法研究[J]. 推进技术, 2022, 43(1): 346-353.

    LIU Z H, ZHENG Q G, LIU M L, et al. Improvement method of turbofan engine full-envelope acceleration control schedule[J]. Journal of Propulsion Technology, 2022, 43(1): 346-353(in Chinese).
    [10] HOU Z S, JIN S T. Model free adaptive control: theory and applications[M]. Boca Raton: CRC Press, 2014: 15-16.
    [11] 王文佳, 侯忠生. 基于无模型自适应控制的自动泊车方案[J]. 控制与决策, 2022, 37(8): 2056-2066.

    WANG W J, HOU Z S. Model-free adaptive control based automatic parking scheme[J]. Control and Decision, 2022, 37(8): 2056-2066(in Chinese).
    [12] 曹荣敏, 郑鑫鑫, 侯忠生. 基于改进多入多出无模型自适应控制的二维直线电机迭代学习控制[J]. 电工技术学报, 2021, 36(19): 4025-4034.

    CAO R M, ZHENG X X, HOU Z S. An iterative learning control based on improved multiple input and multiple output model free adaptive control for two-dimensional linear motor[J]. Transactions of China Electrotechnical Society, 2021, 36(19): 4025-4034(in Chinese).
    [13] 邓望权, 田震, 王子楠, 等. 基于PI与无模型自适应控制结合的燃气轮机转速控制方法[J]. 推进技术, 2022, 43(7): 404-412.

    DENG W Q, TIAN Z, WANG Z N, et al. Speed control method of gas turbine based on combination of PI and model free adaptive control[J]. Journal of Propulsion Technology, 2022, 43(7): 404-412(in Chinese).
    [14] 管庭筠, 李秋红. 基于改进无模型自适应算法的涡扇发动机限制保护控制方法[J]. 推进技术, 2020, 41(10): 2348-2357.

    GUAN T J, LI Q H. Control method for limit protection of turbofan engine based on improved model-free adaptive algorithm[J]. Journal of Propulsion Technology, 2020, 41(10): 2348-2357(in Chinese).
    [15] LIU S D, HOU Z S, ZHANG X, et al. Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft[J]. IET Control Theory & Applications, 2020, 14(15): 2084-2096.
    [16] 陆军, 郭迎清, 王磊. 航空发动机过渡态最优控制规律设计的新方法[J]. 航空动力学报, 2012, 27(8): 1914-1920.

    LU J, GUO Y Q, WANG L. A new method for designing optimal control law of aeroengine in transient states[J]. Journal of Aerospace Power, 2012, 27(8): 1914-1920(in Chinese).
    [17] ZHENG Q G, ZHANG H B. A global optimization control for turbo-fan engine acceleration schedule design[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(2): 308-316. doi: 10.1177/0954410016683412
    [18] LIU Y F, JAFARI S, NIKOLAIDIS T. Advanced optimization of gas turbine aero-engine transient performance using linkage-learning genetic algorithm: Part I, Building blocks detection and optimization in runway[J]. Chinese Journal of Aeronautics, 2021, 34(4): 526-539. doi: 10.1016/j.cja.2020.07.034
    [19] 时培燕, 缑林峰, 郭江维, 等. 基于GA-SQP的航空发动机加速寻优控制[J]. 计算机与现代化, 2014(1): 62-66.

    SHI P Y, GOU L F, GUO J W, et al. Optimal control of aeroengine acceleration process based on GA-SQP[J]. Computer and Modernization, 2014(1): 62-66(in Chinese).
    [20] YE Y, WANG Z, ZHANG X. Cascade ensemble-RBF-based optimization algorithm for aero-engine transient control schedule design optimization[J]. Aerospace Science and Technology, 2021, 115: 106779. doi: 10.1016/j.ast.2021.106779
    [21] JIA L Y, CHEN Y C, CHENG R H, et al. Designing method of acceleration and deceleration control schedule for variable cycle engine[J]. Chinese Journal of Aeronautics, 2021, 34(5): 27-38. doi: 10.1016/j.cja.2020.08.037
    [22] 刘波, 王凌, 金以慧. 差分进化算法研究进展[J]. 控制与决策, 2007, 22(7): 721-729. doi: 10.3321/j.issn:1001-0920.2007.07.001

    LIU B, WANG L, JIN Y H. Advances in differential evolution[J]. Control and Decision, 2007, 22(7): 721-729(in Chinese). doi: 10.3321/j.issn:1001-0920.2007.07.001
    [23] 李志鹏, 王曦, 王华威, 等. 基于差分进化算法的涡喷发动机增推研究[J]. 推进技术, 2015, 36(11): 1714-1720.

    LI Z P, WANG X, WANG H W, et al. Research on differential evolution algorithm-based thrust augmentation of turbojet[J]. Journal of Propulsion Technology, 2015, 36(11): 1714-1720(in Chinese).
    [24] 焦洋, 李秋红, 朱正琛, 等. 基于 ADE-ELM 的涡轴发动机建模方法[J]. 航空动力学报, 2016, 31(4): 965-973.

    JIAO Y, LI Q H, ZHU Z C, et al. Turbo-shaft engine modeling method based on ADE-ELM[J]. Journal of Aerospace Power, 2016, 31(4): 965-973(in Chinese).
    [25] HOU Z S, ZHU Y M. Controller-dynamic-linearization-based model free adaptive control for discrete-time nonlinear systems[J]. IEEE Transactions on Industrial Informatics, 2013, 9(4): 2301-2309. doi: 10.1109/TII.2013.2257806
    [26] HOU Z S, XIONG S S. On model-free adaptive control and its stability analysis[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 4555-4569. doi: 10.1109/TAC.2019.2894586
    [27] 赵颖. 切换系统的镇定控制设计: 无扰切换控制方法[D]. 沈阳: 东北大学, 2019.

    ZHAO Y. Study on stabilization control design for switched systems: A bumpless transfer control method[D]. Shenyang: Northeastern University, 2019(in Chinese).
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  100
  • HTML全文浏览量:  36
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 录用日期:  2022-06-06
  • 网络出版日期:  2022-07-06
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答