留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浮升力对竖直螺旋管中超临界CO2换热的影响及判别准则

王彦红 陆英楠 李洪伟 李素芬 东明

王彦红,陆英楠,李洪伟,等. 浮升力对竖直螺旋管中超临界CO2换热的影响及判别准则[J]. 北京航空航天大学学报,2023,49(11):2929-2937 doi: 10.13700/j.bh.1001-5965.2022.0024
引用本文: 王彦红,陆英楠,李洪伟,等. 浮升力对竖直螺旋管中超临界CO2换热的影响及判别准则[J]. 北京航空航天大学学报,2023,49(11):2929-2937 doi: 10.13700/j.bh.1001-5965.2022.0024
WANG Y H,LU Y N,LI H W,et al. Influence and criterion of buoyancy force on heat transfer of supercritical CO2 in a vertical helical tube[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2929-2937 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0024
Citation: WANG Y H,LU Y N,LI H W,et al. Influence and criterion of buoyancy force on heat transfer of supercritical CO2 in a vertical helical tube[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2929-2937 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0024

浮升力对竖直螺旋管中超临界CO2换热的影响及判别准则

doi: 10.13700/j.bh.1001-5965.2022.0024
基金项目: 国家自然科学基金(51576027);吉林省教育厅科研项目(JJKH20220100KJ);东北电力大学青年博士科研助推计划(BSZT02202102)
详细信息
    通讯作者:

    E-mail:lihongwei@neepu.edu.cn

  • 中图分类号: V233.5

Influence and criterion of buoyancy force on heat transfer of supercritical CO2 in a vertical helical tube

Funds: National Natural Science Foundation of China (51576027);Scientific Research Project of Jilin Provincial Education Department (JJKH20220100KJ); Young Doctoral Research Project of Northeast Electric Power University (BSZT02202102)
More Information
  • 摘要:

    基于航空发动机间冷器的冷却换热问题,进行竖直螺旋管内超临界压力CO2换热数值研究。探究运行参数对沿流向和周向换热的影响机制。通过管截面温度场和流场分布阐述了浮升力和离心力引起的周向非均匀换热机制,评估二次流速度和强度。根据管道结构特性提出新的浮升力参数和浮升力影响判别准则,建立新的换热关联式。结果表明:管上游非均匀换热源于浮升力与离心力综合作用,管下游非均匀换热由离心力主导。当满足浮升力因子Bu≥1.6×10−5时,浮升力在换热中起主导作用。新换热关联式可以较好地适用于螺旋管内换热预测。

     

  • 图 1  竖直螺旋管示意图

    Figure 1.  Diagram of vertical helical tube

    图 2  二氧化碳ρcp随温度的变化

    Figure 2.  Variations of carbon dioxide ρ and cp with temperature

    图 3  Toutuout随网格数的变化

    Figure 3.  Tout and uout variations with number of meshes

    图 4  螺旋管网格

    Figure 4.  Mesh of helical tube

    图 5  TwiTbl/di的变化

    Figure 5.  Twi and Tb variations with l/di

    图 6  不同工况下Twi,avhavl/di的变化

    Figure 6.  Twi,av and hav variations with l/di at different conditions

    图 7  不同周向位置Twihl/di的变化

    Figure 7.  Twi and h variations with l/di at different circumferential positions

    图 8  P1位置管截面温度、二次流速度、局部质量流速和湍动能的分布情况

    Figure 8.  Temperature, secondary flow velocity, local mass flux and turbulent kinetic energy distributions at position of P1 cross-section

    图 9  P2位置管截面温度、二次流速度、局部质量流速和湍动能的分布情况

    Figure 9.  Temperature, secondary flow velocity, local mass flux and turbulent kinetic energy distributions at position P2 cross-section

    图 10  不同工况下h的周向分布情况

    Figure 10.  h circumferential distributions at different conditions

    图 11  不同工况下Sel/di的变化

    Figure 11.  Se variations with l/di at different conditions

    图 12  BuRi*的变化

    Figure 12.  Bu variations with Ri*

    图 13  不同工况下∆TwiBul/di的分布

    Figure 13.  Twi and Bu distributions with l/di at different conditions

    图 14  Nu计算结果和数值数据的比较

    Figure 14.  Comparison of Nu between calculated results and numerical data

    图 15  Nu计算结果和实验数据的比较

    Figure 15.  Comparison of Nu between calculated results and experimental data

  • [1] 龚昊, 王占学, 刘增文. 间冷回热循环航空发动机参数匹配研究[J]. 航空动力学报, 2012, 27(8): 1809-1814. doi: 10.13224/j.cnki.jasp.2012.08.019

    GONG H, WANG Z X, LIU Z W. Study on thermodynamic cycle parameter matching for intercooled recuperated aero-engine[J]. Journal of Aerospace Power, 2012, 27(8): 1809-1814(in Chinese). doi: 10.13224/j.cnki.jasp.2012.08.019
    [2] 龚昊, 王占学, 康涌, 等. 间冷回热航空发动机性能计算与分析[J]. 航空动力学报, 2014, 29(6): 1453-1461. doi: 10.13224/j.cnki.jasp.2014.06.027

    GONG H, WANG Z X, KANG Y, et al. Performance calculation and analysis of intercooled recuperated aero-engine[J]. Journal of Aerospace Power, 2014, 29(6): 1453-1461(in Chinese). doi: 10.13224/j.cnki.jasp.2014.06.027
    [3] 王占学, 龚昊, 刘增文, 等. 间冷回热航空发动机技术发展趋势分析[J]. 航空发动机, 2013, 39(6): 13-18.

    WANG Z X, GONG H, LIU Z W, et al. Analysis of technical development trend of intercooled recuperated aeroengine[J]. Aeroengine, 2013, 39(6): 13-18(in Chinese).
    [4] 赵璧, 宣益民. 航空发动机间冷器及回热器发展研究综述[J]. 航空学报, 2017, 38(9): 520934.

    ZHAO B, XUAN Y M. A review of research on intercoolers and recuperators in aero-engines[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 520934(in Chinese).
    [5] JACOB F, ROLT A, SEBASTIAMPILLAI J, et al. Performance of a supercritical CO2 bottoming cycle for aero applications[J]. Applied Sciences, 2017, 7(3): 255. doi: 10.3390/app7030255
    [6] BAI W J, ZHANG S J, LI H R, et al. Effects of abnormal gravity on heat transfer of supercritical CO2 in heated helically coiled tube[J]. Applied Thermal Engineering, 2019, 159: 113833. doi: 10.1016/j.applthermaleng.2019.113833
    [7] HUANG X R, ZHANG Z, YANG X T, et al. Numerical investigation on turbulent heat transfer of supercritical CO2 in a helically coiled tube[C]//Proceedings of 2018 26th International Conference on Nuclear Engineering. Beijing: Chinese Nuclear Society, 2018.
    [8] LIU X X, XU X X, LIU C, et al. Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles[J]. Applied Thermal Engineering, 2017, 116: 500-515. doi: 10.1016/j.applthermaleng.2017.01.103
    [9] LIU X X, XU X X, LIU C, et al. Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles[J]. Energy, 2018, 147: 1-14. doi: 10.1016/j.energy.2017.12.163
    [10] LI Z H, ZHAI Y L, BI D P, et al. Orientation effect in helical coils with smooth and rib-roughened wall: Toward improved gas heaters for supercritical carbon dioxide Rankine cycles[J]. Energy, 2017, 140: 530-545. doi: 10.1016/j.energy.2017.09.010
    [11] YANG M, LI G R, LIAO F, et al. Numerical study of characteristic influence on heat transfer of supercritical CO2 in helically coiled tube with non-circular cross section[J]. International Journal of Heat and Mass Transfer, 2021, 176: 121511. doi: 10.1016/j.ijheatmasstransfer.2021.121511
    [12] LIU X X, XU X X, JIAO Y Z, et al. Flow structure with mixed turbulent flow of supercritical CO2 heated in helically coiled tube[J]. Applied Thermal Engineering, 2021, 189: 116684. doi: 10.1016/j.applthermaleng.2021.116684
    [13] LIU X X, XU X X, LIU C, et al. The effect of geometry parameters on the heat transfer performance of supercritical CO2 in horizontal helically coiled tube under the cooling condition[J]. International Journal of Refrigeration, 2019, 106: 650-661. doi: 10.1016/j.ijrefrig.2019.02.008
    [14] ZHANG S J, XU X X, LIU C, et al. The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube[J]. International Journal of Heat and Mass Transfer, 2018, 125: 274-289. doi: 10.1016/j.ijheatmasstransfer.2018.04.033
    [15] ZHANG S J, XU X X, LIU C, et al. The heat transfer of supercritical CO2 in helically coiled tube: Trade-off between curvature and buoyancy effect[J]. Energy, 2019, 176: 765-777. doi: 10.1016/j.energy.2019.03.150
    [16] XU X X, LIU C, DANG C B, et al. Experimental investigation on heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube[J]. International Journal of Refrigeration, 2016, 67: 190-201. doi: 10.1016/j.ijrefrig.2016.03.010
    [17] YANG M. Numerical study of the heat transfer to carbon dioxide in horizontal helically coiled tubes under supercritical pressure[J]. Applied Thermal Engineering, 2016, 109: 685-696. doi: 10.1016/j.applthermaleng.2016.08.121
    [18] ZHANG W, WANG S X, LI C D, et al. Mixed convective heat transfer of CO2 at supercritical pressures flowing upward through a vertical helically coiled tube[J]. Applied Thermal Engineering, 2015, 88: 61-70. doi: 10.1016/j.applthermaleng.2014.10.031
    [19] LI Z H, ZHAI Y L, LI K Z, et al. A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles[J]. Energy, 2016, 116: 661-676. doi: 10.1016/j.energy.2016.10.005
    [20] WANG K Z, XU X X, WU Y Y, et al. Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes[J]. The Journal of Supercritical Fluids, 2015, 99: 112-120. doi: 10.1016/j.supflu.2015.02.001
    [21] XU J L, YANG C Y, ZHANG W, et al. Turbulent convective heat transfer of CO2 in a helical tube at near-critical pressure[J]. International Journal of Heat and Mass Transfer, 2015, 80: 748-758. doi: 10.1016/j.ijheatmasstransfer.2014.09.066
    [22] TAO Z, LI L W, ZHU J Q, et al. Numerical investigation on flow and heat transfer characteristics of supercritical RP-3 in inclined pipe[J]. Chinese Journal of Aeronautics, 2019, 32(8): 1885-1894. doi: 10.1016/j.cja.2019.05.007
    [23] KIM D E, KIM M H. Experimental study of the effects of flow acceleration and buoyancy on heat transfer in a supercritical fluid flow in a circular tube[J]. Nuclear Engineering and Design, 2010, 240(10): 3336-3349. doi: 10.1016/j.nucengdes.2010.07.002
    [24] ZHANG S J, XU X X, LIU C, et al. Experimental investigation of the heat transfer behaviors of CO2, propane and their binary non-azeotropic mixtures above critical pressure in helically coiled tube[J]. Applied Thermal Engineering, 2020, 180: 115842. doi: 10.1016/j.applthermaleng.2020.115842
    [25] LI Y, CHEN Y Q, ZHANG Y C, et al. An improved heat transfer correlation for supercritical aviation kerosene flowing upward and downward in vertical tubes[J]. Journal of Thermal Science, 2020, 29(1): 131-143. doi: 10.1007/s11630-019-1197-2
  • 加载中
图(15)
计量
  • 文章访问数:  86
  • HTML全文浏览量:  17
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-17
  • 录用日期:  2022-05-01
  • 网络出版日期:  2022-06-09
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答