留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局部振动对火星环境下薄翼型气动性能的影响

陈肇麟 陆政旭 肖天航 邓双厚

陈肇麟,陆政旭,肖天航,等. 局部振动对火星环境下薄翼型气动性能的影响[J]. 北京航空航天大学学报,2023,49(11):2938-2950 doi: 10.13700/j.bh.1001-5965.2022.0032
引用本文: 陈肇麟,陆政旭,肖天航,等. 局部振动对火星环境下薄翼型气动性能的影响[J]. 北京航空航天大学学报,2023,49(11):2938-2950 doi: 10.13700/j.bh.1001-5965.2022.0032
CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0032
Citation: CHEN Z L,LU Z X,XIAO T H,et al. Effect of local oscillation on aerodynamics of thin airfoil in Mars environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2938-2950 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0032

局部振动对火星环境下薄翼型气动性能的影响

doi: 10.13700/j.bh.1001-5965.2022.0032
基金项目: 国家自然科学基金(11672133,12002161);江苏高校优势学科建设工程
详细信息
    通讯作者:

    E-mail: xthang@nuaa.edu.cn

  • 中图分类号: V211.3

Effect of local oscillation on aerodynamics of thin airfoil in Mars environment

Funds: National Natural Science Foundation of China (11672133,12002161);Priority Academic Program Development of Jiangsu Higher Education Institutions
More Information
  • 摘要:

    火星的稀薄大气环境迫使无人机在亚临界雷诺数范围工作,低雷诺数层流分离问题给无人机气动性能带来极其不利的影响。同时,火星大气的声速较低,使无人机运行的马赫数更高,压缩效应增强并可能产生激波。为研究火星环境下翼型局部振动的流动控制作用,采用基于动网格的数值方法对非定常流场进行模拟。选取NACA5605低雷诺数薄翼型,雷诺数为1.5×104,马赫数为0.43和0.63。时均流场和时均气动力系数结果显示:翼型局部振动能够明显减少时均分离区的大小,起到增升减阻的作用。非定常流场表明流动控制机理在于振动产生的涡流运动抑制了翼型尾缘附近的层流分离。研究了不同振幅、频率和振动位置下的流动控制效果。最佳参数下,马赫数为0.43时升阻比最多提高24.7%,马赫数为0.63时升阻比最多提高52%。

     

  • 图 1  局部振动变形草图

    Figure 1.  Sketch of deformation of local oscillation

    图 2  网格和边界条件

    Figure 2.  Mesh and boundary condition

    图 3  不同网格的非定常升力系数

    Figure 3.  Unsteady lift coefficients of different meshes

    图 4  不同时间步长的非定常升力系数

    Figure 4.  Unsteady lift coefficients of different time steps

    图 5  三角形翼型

    Figure 5.  Triangular airfoil

    图 6  三角形翼型计算值和实验值的对比

    Figure 6.  Comparison between calculated results and experimental results of triangular airfoil

    图 7  NACA5605翼型时均流场

    Figure 7.  Time-average flow fields of NACA5605 airfoil

    图 8  工况1和工况2时均压力系数分布对比

    Figure 8.  Comparison of time-average pressure coefficient distribution between Case1 and Case 2

    图 9  工况1和工况2的非定常流场

    Figure 9.  Unsteady flow field of Case 1 and Case 2

    图 10  不同振幅下气动力的相对变化比例

    Figure 10.  Relative change ratio of aerodynamic force at different amplitudes

    图 11  不同振幅下的时均流场

    Figure 11.  Time-average flow field at different amplitudes

    图 12  不同频率下气动力的相对变化比例

    Figure 12.  Relative change ratio of aerodynamic force at different frequencies

    图 13  不同频率下的时均流场

    Figure 13.  Time-average flow field at different frequencies

    图 14  不同振动位置下气动力的相对变化比例

    Figure 14.  Relative change ratio of aerodynamic force at different oscillation locations

    图 15  不同振动位置下的时均流场

    Figure 15.  Time-average flow field at different oscillation locations

    图 16  未施加振动和施加振动的等效翼型

    Figure 16.  Equivalent airfoil with and without local oscillation

    图 17  时均压力系数分布的对比

    Figure 17.  Comparison of time-average pressure coefficient distribution

    图 18  未施加振动和施加振动下的时均无量纲速度场

    Figure 18.  Time-average non-dimensional velocity field with and without local oscillation

    图 19  翼型局部振动非定常升力系数

    Figure 19.  Unsteady lift coefficients of airfoil with local oscillation

    图 20  局部振动非定常流场

    Figure 20.  Unsteady flow field of local oscillation

    图 21  工况1局部振动无量纲涡量云图

    Figure 21.  Non-dimensional vorticity contours of Case 1 with local oscillation

    图 22  未施加振动和施加振动下的间歇因子分布

    Figure 22.  γ distributions with and without local oscillation

    图 23  上表面的时均表面摩擦系数的对比

    Figure 23.  Comparison of time-average skin friction coefficient of upper surface

    表  1  火星和地球大气参数

    Table  1.   Atmospheric parameters of Mars and Earth

    星球 平均大气
    压力/kPa
    大气密度/
    (kg·m−3)
    平均温度/K 大气成分 重力加速度/
    (m·s−2)
    声速/
    (m·s−1)
    动力黏度/
    (kg·m−1·s−1))
    摩尔质量/
    (g·mol−1)
    地球 101.3 1.225 288 N2(77%),O2(21%),Ar(0.9%),CO2(0.03%) 9.8 340 1.789×10−5 28.966
    火星 0.72 0.017 210 CO2(95.3%),N2(2.7%),Ar(1.6%),O2(0.13%),CO(0.07%) 3.7 227 1.130×10−5 44.015
    下载: 导出CSV

    表  2  流场参数

    Table  2.   Parameters of flow field

    工况 翼型
    弦长/m
    来流速
    度/(m·s−1)
    来流攻
    角/(°)
    雷诺数
    Re/104
    马赫数
    Ma
    湍流强
    度/%
    工况1 0.1 99.3 6 1.5 0.43 0.082
    工况2 0.068 146.9 6 1.5 0.63 0.082
    下载: 导出CSV

    表  3  网格参数

    Table  3.   Parameters of meshes

    网格总单元数翼型表面节点数翼型到远场节点数
    网格A85 000601101
    网格B131 000801126
    网格C195 0001001151
    下载: 导出CSV

    表  4  工况1不同振幅下的气动力系数

    Table  4.   Aerodynamic force coefficients at different amplitudes of Case 1

    无量纲振幅A升力系数CL阻力系数CD升阻比
    L/D
    00.966 60.066 0814.627
    0.001 00.999 90.070 5114.181
    0.002 51.077 50.059 7418.036
    0.005 01.110 70.061 0018.209
    0.007 51.102 90.063 4017.395
    0.010 01.077 20.065 7216.391
    下载: 导出CSV

    表  5  工况2不同振幅下的气动力系数

    Table  5.   Aerodynamic force coefficients at different amplitudes of Case 2

    无量纲振幅A升力系数CL阻力系数CD升阻比
    L/D
    00.834 90.072 6611.491
    0.001 01.016 00.083 8012.124
    0.002 51.245 50.087 9414.164
    0.005 01.278 90.076 6416.686
    0.007 51.260 40.075 6816.655
    0.010 01.228 40.077 5415.843
    下载: 导出CSV

    表  6  工况1不同频率下的气动力系数

    Table  6.   Aerodynamic force coefficients at different frequencies of Case 1

    无量纲频率
    f
    升力系数CL阻力系数CD升阻比
    L/D
    00.966 60.066 0814.627
    0.501.096 80.061 6717.785
    0.751.088 00.059 6418.243
    1.001.110 70.061 0018.209
    1.501.091 60.061 6417.710
    2.001.052 00.060 1417.493
    下载: 导出CSV

    表  7  工况2不同频率下的气动力系数

    Table  7.   Aerodynamic force coefficients at different frequencies of Case 2

    无量纲振幅A升力系数CL阻力系数CD升阻比
    L/D
    00.834 90.072 6611.491
    0.501.183 90.093 9712.598
    0.751.257 20.082 0915.314
    1.001.278 90.076 6416.686
    1.501.319 20.075 5217.469
    2.001.244 70.072 0617.272
    下载: 导出CSV

    表  8  工况1不同振动位置下的气动力系数

    Table  8.   Aerodynamic force coefficients at different oscillation locations of Case 1

    振动位置起始点升力系数CL阻力系数CD升阻比L/D
    0c 1.110 70.061 0018.209 2
    0.1c1.059 60.066 0916.033 8
    0.2c1.032 60.067 3215.337 3
    0.3c0.998 20.068 7514.519 9
    0.4c0.995 00.071 4713.921 7
    下载: 导出CSV

    表  9  工况2不同振动位置下的气动力系数

    Table  9.   Aerodynamic force coefficients at different oscillation locations of Case 2

    振动位置起始点升力系数CL阻力系数CD升阻比L/D
    0c 1.278 90.076 6416.686 1
    0.1c1.314 90.089 6814.662 1
    0.2c1.137 90.097 7911.636 5
    0.3c1.105 60.095 7811.543 6
    0.4c1.066 10.093 2011.439 4
    下载: 导出CSV
  • [1] 赵宇鴳, 周迪圣, 李雄耀, 等. 国际火星探测科学目标演变与未来展望[J]. 科学通报, 2020, 65(23): 2439-2453. doi: 10.1360/TB-2019-0638

    ZHAO Y A, ZHOU D S, LI X Y, et al. The evolution of scientific goals for Mars exploration and future prospects[J]. Chinese Science Bulletin, 2020, 65(23): 2439-2453(in Chinese). doi: 10.1360/TB-2019-0638
    [2] 赵鹏越, 全齐全, 邓宗全, 等. 旋翼式火星无人机技术发展综述[J]. 宇航学报, 2018, 39(2): 121-130. doi: 10.3873/j.issn.1000-1328.2018.02.002

    ZHAO P Y, QUAN Q Q, DENG Z Q, et al. Overview of research on rotary-wing Mars unmanned aerial vehicles[J]. Journal of Astronautics, 2018, 39(2): 121-130(in Chinese). doi: 10.3873/j.issn.1000-1328.2018.02.002
    [3] KONING W J F, JOHNSON W, GRIP H F. Improved Mars helicopter aerodynamic rotor model for comprehensive analyses[J]. AIAA Journal, 2019, 57(9): 3969-3979. doi: 10.2514/1.J058045
    [4] BALARAM J, DAUBAR I J, BAPST J, et al. Helicopters on Mars: Compelling science of extreme terrains enabled by an aerial platform[C]//9th International Conference on Mars, 2019.
    [5] MCMASTERS J, HENDERSON M L. Low-speed single-element airfoil synthesis[J]. Technical Soaring, 1979, 6: 1-21.
    [6] WANG S, ZHOU Y, ALAM M M, et al. Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers[J]. Physics of Fluids, 2014, 26(11): 115107. doi: 10.1063/1.4901969
    [7] GAD-EL-HAK M. Micro-air-vehicles: Can they be controlled better?[J]. Journal of Aircraft, 2001, 38(3): 419-429. doi: 10.2514/2.2807
    [8] ANYOJI M, NUMATA D, NAGAI H, et al. Effects of Mach number and specific heat ratio on low-Reynolds-number airfoil flows[J]. AIAA Journal, 2015, 53(6): 1640-1654. doi: 10.2514/1.J053468
    [9] KONING W J F, JOHNSON W, ALLAN B G. Generation of Mars helicopter rotor model for comprehensive analyses[C]//Proceedings of the AHS International Technical Meeting on Aeromechanics Design for Transformative Vertical Flight, 2018.
    [10] 张旺龙, 谭俊杰, 陈志华, 等. 抽吸控制对低雷诺数下翼型分离流动的影响[J]. 航空学报, 2014, 35(1): 141-150.

    ZHANG W L, TAN J J, CHEN Z H, et al. Effect of suction control on separation flow around an airfoil at low Reynolds numbers[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 141-150(in Chinese).
    [11] 左伟, 顾蕴松, 王奇特, 等. 低雷诺数下机翼气动特性研究及控制[J]. 航空学报, 2016, 37(4): 1139-1147.

    ZUO W, GU Y S, WANG Q T, et al. Aerodynamic characteristics and flow control on a rectangular wing at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4): 1139-1147(in Chinese).
    [12] 孟宣市, 杨泽人, 陈琦, 等. 低雷诺数下层流分离的等离子体控制[J]. 航空学报, 2016, 37(7): 2112-2122.

    MENG X S, YANG Z R, CHEN Q, et al. Laminar separation control at low Reynolds numbers using plasma actuation[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7): 2112-2122(in Chinese).
    [13] SINHA S K. Flow separation control with microflexural wall vibrations[J]. Journal of Aircraft, 2001, 38(3): 496-503. doi: 10.2514/2.2789
    [14] SINHA S. Aircraft drag reduction with flexible composite surface boundary layer control[C]// Proceedings of the 2nd AIAA Flow Control Conference. Reston: AIAA, 2004.
    [15] ARTHUR G G, MCKEON B J, DEARING S S, et al. Manufacture of micro-sensors and actuators for flow control[J]. Microelectronic Engineering, 2006, 83(4-9): 1205-1208. doi: 10.1016/j.mee.2006.01.171
    [16] WEDDLE A, ZAREMSKI S, ZHANG L, et al. Control of laminar separation bubble using electro-active polymers[C]// Proceedings of the 6th AIAA Flow Control Conference. Reston: AIAA, 2012.
    [17] DEMAURO E P, DELL’ORSO H, ZAREMSKI S, et al. Control of laminar separation bubble on NACA 0009 airfoil using electroactive polymers[J]. AIAA Journal, 2015, 53(8): 2270-2279. doi: 10.2514/1.J053670
    [18] 卢丛玲, 祁浩天, 徐国华. 共轴双旋翼非定常流场干扰特性[J]. 航空动力学报, 2019, 34(7): 1459-1470.

    LU C L, QI H T, XU G H. Unsteady flow field interaction of coaxial rotor[J]. Journal of Aerospace Power, 2019, 34(7): 1459-1470(in Chinese).
    [19] KANG W, LEI P F, ZHANG J Z, et al. Effects of local oscillation of airfoil surface on lift enhancement at low Reynolds number[J]. Journal of Fluids and Structures, 2015, 57: 49-65. doi: 10.1016/j.jfluidstructs.2015.05.009
    [20] DI G Q, WU Z C, HUANG D G. The research on active flow control method with vibration diaphragm on a NACA0012 airfoil at different stalled angles of attack[J]. Aerospace Science and Technology, 2017, 69: 76-86. doi: 10.1016/j.ast.2017.06.020
    [21] LOU B, YE S J, WANG G F, et al. Numerical and experimental research of flow control on an NACA 0012 airfoil by local vibration[J]. Applied Mathematics and Mechanics, 2019, 40(1): 1-12. doi: 10.1007/s10483-019-2404-8
    [22] 刘强, 刘周, 白鹏, 等. 低雷诺数翼型蒙皮主动振动气动特性及流场结构数值研究[J]. 力学学报, 2016, 48(2): 269-277.

    LIU Q, LIU Z, BAI P, et al. Numerical study about aerodynamic characteristics and flow field structures for a skin of airfoil with active oscillation at low Reynolds number[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 269-277(in Chinese).
    [23] 李冠雄, 马东立, 杨穆清, 等. 低雷诺数翼型局部振动非定常气动特性[J]. 航空学报, 2018, 39(1): 121427.

    LI G X, MA D L, YANG M Q, et al. Unsteady aerodynamic characteristics of airfoil with local oscillation at low Reynolds number[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 121427(in Chinese).
    [24] 杨荣菲, 徐堃, 仲冬冬, 等. 振动凸包控制低雷诺数高负荷低压涡轮叶栅层流分离的数值研究[J]. 推进技术, 2019, 40(2): 267-275. doi: 10.13675/j.cnki.tjjs.170805

    YANG R F, XU K, ZHONG D D, et al. Numerical study on laminar separation control using dynamic hump in high-loaded low pressure turbine cascade at low-Reynolds number[J]. Journal of Propulsion Technology, 2019, 40(2): 267-275(in Chinese). doi: 10.13675/j.cnki.tjjs.170805
    [25] LEI J M, ZHANG J W, NIU J P. Effect of active oscillation of local surface on the performance of low Reynolds number airfoil[J]. Aerospace Science and Technology, 2020, 99: 105774. doi: 10.1016/j.ast.2020.105774
    [26] MENTER F R, LANGTRY R B, LIKKI S R, et al. A correlation-based transition model using local variables—Part I: Model formulation[J]. Journal of Turbomachinery, 2006, 128(3): 413. doi: 10.1115/1.2184352
    [27] SUWA T, NOSE K, NUMATA D, et al. Compressibility effects on airfoil aerodynamics at low Reynolds number[C]// Proceedings of the 30th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2012.
    [28] 吴锤结, 解妍琼, 吴介之. "流体滚动轴承"效应及其在流动控制中的应用[C]//全国第九届分离流、旋涡和流动控制会议. 北京: 中国空气动力学会, 2002: 281-290

    WU C J, XIE Y Q, WU J Z. Effect and application of flow control of fluid ball bearing[C]//The Ninth National Conference on Flow Separation, Vortex and Flow Control Conference. Beijing: CARS, 2002: 281-290 (in Chinese).
    [29] 吴锤结, 王亮. 运动物面流动控制[J]. 固体力学学报, 2005, 26: 10-21.

    WU C J, WANG L. Control flow of moving interface[J]. Acta Mechanica Solida Sinica, 2005, 26: 10-21(in Chinese).
  • 加载中
图(23) / 表(9)
计量
  • 文章访问数:  127
  • HTML全文浏览量:  436
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 录用日期:  2022-03-11
  • 网络出版日期:  2022-03-18
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答