留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动量增升高升阻比飞行器横航向稳定性研究

刘深深 罗磊 韩青华 唐伟 桂业伟 贾洪印

刘深深,罗磊,韩青华,等. 动量增升高升阻比飞行器横航向稳定性研究[J]. 北京航空航天大学学报,2023,49(11):3010-3021 doi: 10.13700/j.bh.1001-5965.2022.0035
引用本文: 刘深深,罗磊,韩青华,等. 动量增升高升阻比飞行器横航向稳定性研究[J]. 北京航空航天大学学报,2023,49(11):3010-3021 doi: 10.13700/j.bh.1001-5965.2022.0035
LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0035
Citation: LIU S S,LUO L,HAN Q H,et al. Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3010-3021 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0035

动量增升高升阻比飞行器横航向稳定性研究

doi: 10.13700/j.bh.1001-5965.2022.0035
基金项目: 国家数值风洞工程
详细信息
    通讯作者:

    E-mail:hongyinjia@foxmail.com

  • 中图分类号: V221+.3;TB553

Study on lateral-directional stability of a practical high lift-to-drag ratio hypersonic vehicle with momentum lift augmentation

Funds: National Numerical Windtunnel Project
More Information
  • 摘要:

    考虑高超声速飞行器装填、防热及操稳等多约束条件下的实用化设计需求,提出一种新型下反式高升阻比滑翔飞行器气动布局。借鉴乘波体飞行器的高升力设计方法及动量增升原理,该新型飞行器采用下反式后掠翼构型,上表面为光滑倒圆“Λ”形设计,下表面为内凹的装填空间,为尽可能避免长时间超远距离高超声速飞行带来的防热负担,采用后缘体襟翼及体侧扩张方向舵面设计。采用数值计算方法对所提布局思路进行验证分析,计算结果表明:在飞行高度为40 km,Ma=10的条件下升阻比可以达到4.48左右,在一定迎角范围内均具备很高的气动效率,验证了所提布局的有效性。同时重点针对所提布局共性的横航向稳定性问题基于数值模拟方法探讨了3种不同优化改进方案的效果及可行性,并采用风洞试验对两侧翼梢V尾的控制方案进行横航向稳定性控制效果的试验验证,结果表明:采用两侧翼梢V尾的控制方案是实现横航向稳定性控制的较优方案。

     

  • 图 1  不同装填布置方式

    Figure 1.  Different loading options

    图 2  下折翼型的动量增升原理[17-18]

    Figure 2.  Principle of momentum increasing lift for the negtive dihedral wing[17-18]

    图 3  初步截面设计形状

    Figure 3.  Primary cross section design shape

    图 4  下反型气动布局截面形状

    Figure 4.  Lower inverse aerodynamic layout cross section shape

    图 5  锥柱体装填约束与截面设计

    Figure 5.  Cone-column loading constraint and cross section shape

    图 6  总体布局三视图

    Figure 6.  Three views of overall configuration

    图 7  头部及前缘设计

    Figure 7.  Design of head and leading edge

    图 8  飞行器三维视图

    Figure 8.  3D view of the aircraft

    图 9  外形操纵面布置方式设计

    Figure 9.  Design of shape manipulation surface layout

    图 10  空天飞机网格

    Figure 10.  Mesh grid of aerospace plane vehicle

    图 11  计算与风洞试验数值对比

    Figure 11.  Comparison of calculated and wind tunnel experiment data

    图 12  中等密度计算网格

    Figure 12.  Medium density cauculating mesh grid

    图 13  初始方案不同马赫数下升阻比特性

    Figure 13.  Characteristics of lift to drag ratio at different Mach numbers of initial scheme

    图 14  Ma=10时不同横截面的流场压力系数分布

    Figure 14.  Contour cloud of pressure coefficient distribution under mach number Ma=10

    图 15  初始构型横航向特性曲线(Ma=10,He=40 km)

    Figure 15.  Initial configuration of lateral-directional aerodynamic characteristics curve (Ma=10,He=40 km)

    图 16  侧滑角β为5°下飞行器基本流场特征

    Figure 16.  Basic flow field characteristics

    图 17  垂直安定面方案

    Figure 17.  Vertical stabilized surface scheme

    图 18  头部锥段上下偏心方案

    Figure 18.  Eccentric scheme for the upper and lower part of the head taper section

    图 19  翼梢V尾外形方案

    Figure 19.  Winglet V-tail outline scheme

    图 20  垂直安定面方案横航向稳定性与原始外形特性对比(Ma=10.0)

    Figure 20.  Comparison of lateral-directional aerodynamic characteristics curve for vertical stabilized surface scheme and original scheme (Ma=10.0)

    图 21  头部锥段上下偏心方案横航向特性曲线对比(Ma=10.0)

    Figure 21.  Comparison of lateral-directional aerodynamic characteristics of upper and lower eccentric scheme (Ma=10.0)

    图 22  头部锥段上偏心方案流场特性(Ma=10,α=5°,β=5°)

    Figure 22.  Flow field characteristic of upper eccentric scheme of head taper(Ma=10,α=5°,β=5°)

    图 23  头部锥段下偏心方案流场特性(Ma=10,β=5°)

    Figure 23.  Flow field characteristic of upper and lower eccentric scheme of head taper(Ma=10,β=5°)

    图 24  翼梢V尾外形横航向特性曲线

    Figure 24.  Lateral-directional aerodynamic characteristic curves of winglet V-tail outline

    图 25  翼梢V尾方案Cnβ,dyn曲线 (β=2°)

    Figure 25.  Cnβ,dyn curve of winglet V-tail scheme (β=2°)

    图 26  翼梢V尾方案的流场特性曲线

    Figure 26.  Flow field characteristic of V-tail winglet scheme

    图 27  飞行器最终舵面设计及布局方案

    Figure 27.  Final rudder surface design and configuration scheme of air vehicle

    图 28  采用翼梢V尾的飞行器升阻比特性

    Figure 28.  Lift-to-drag ratio characteristics of aircraft with V winglet

    图 29  风洞试验模型及Ma=10的纹影图像

    Figure 29.  The wind tunneltest model and schlieren at Ma=10

    图 30  风洞试验与本文数值计算横航向特性

    Figure 30.  Lateral-directional aerodynamic characteristics of wind tunnel data and numerical cauculation

    图 31  气动力试验结果与本文数值计算结果

    Figure 31.  Aerodynamic test results and numerical simulation results

  • [1] MOSES P L, RAUSCH V L, NGUYEN L T, et al. NASA hypersonic flight demonstrators—overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3): 619-630.
    [2] MANSOUR N, PITTMAN J, OLSON L. Fundamental aeronautics hypersonics project: Overview[C]//Proceedings of the 39th AIAA Thermophysics Conference. Reston: AIAA, 2007.
    [3] WHITMORE S, DUNBAR B. Orbital space plane: Past, present, and future[C]//Proceedings of the AIAA International Air and Space Symposium and Exposition: The Next 100 Years. Reston: AIAA, 2003.
    [4] WEILAND C. Aerodynamic data of space vehicles[M]. Berlin: Springer, 2014.
    [5] 唐伟, 冯毅, 杨肖峰, 等. 非惯性弹道飞行器气动布局设计实践[J]. 气体物理, 2017, 2(1): 1-12.

    TANG W, FENG Y, YANG X F, et al. Practices of aerodynamic configuration design for non-ballistic trajectory vehicles[J]. Physics of Gases, 2017, 2(1): 1-12(in Chinese).
    [6] ANDERSON J, LEWIS M. Hypersonic waveriders—where do we stand? [C]//Proceedings of the 31st Aerospace Sciences Meeting. Reston: AIAA, 1993.
    [7] 高清, 赵俊波, 李潜. 类HTV-2横侧向稳定性研究[J]. 宇航学报, 2014, 35(6): 657-662.

    GAO Q, ZHAO J B, LI Q. Study on lateral-directional stability of HTV-2 like configuration[J]. Journal of Astronautics, 2014, 35(6): 657-662(in Chinese).
    [8] 高清, 李潜. 美国高超声速飞行器横侧向稳定性研究[J]. 飞航导弹, 2012(12): 14-18.

    GAO Q, LI Q. Study on lateral stability of American hypersonic vehicle[J]. Aerodynamic Missile Journal, 2012(12): 14-18(in Chinese).
    [9] 鲍文, 姚照辉. 综合离心力/气动力的升力体高超声速飞行器纵向运动建模研究[J]. 宇航学报, 2009, 30(1): 128-133.

    BAO W, YAO Z H. Study on longitudinal modeling for integrated centrifugal/aero force lifting-body hypersonic vehicles[J]. Journal of Astronautics, 2009, 30(1): 128-133(in Chinese).
    [10] 马辉, 袁建平, 方群. 吸气式高超声速飞行器动力学特性分析[J]. 宇航学报, 2007, 28(5): 1100-1104.

    MA H, YUAN J P, FANG Q. Dynamics analysis of air-breathing hypersonic vehicle[J]. Journal of Astronautics, 2007, 28(5): 1100-1104(in Chinese).
    [11] 闵昌万. 高超声速飞行器横侧向气动布局准则研究[J]. 宇航总体技术, 2018, 2(3): 1-10.

    MIN C W. The aerodynamic configuration criteria for the lateral-directional stability of hypersonic vehicle[J]. Astronautical Systems Engineering Technology, 2018, 2(3): 1-10(in Chinese).
    [12] LUNAN D A. Waverider, a revised chronology[C]//Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston: AIAA, 2015.
    [13] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585): 521-528. doi: 10.1017/S0368393100071662
    [14] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1): 56-72. doi: 10.1007/BF00532683
    [15] CORDA S, ANDERSON J. Viscous optimized hypersonic waveriders designed from axisymmetric flow fields[C]//Proceedings of the 26th Aerospace Sciences Meeting. Reston: AIAA, 1988.
    [16] LYU Y C, JIANG C W, GAO Z X, et al. Passive waverider method and its validation[C]//Proceedings of the AIAA SPACE 2014 Conference and Exposition. Reston: AIAA, 2014.
    [17] 刘荣健, 白鹏. 基于超声速有益干扰原理的气动构型概念综述[J]. 航空学报, 2020, 41(9): 023784.

    LIU R J, BAI P. Concept of aerodynamic configuration based on supersonic favorable interference principle: review[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(9): 023784(in Chinese).
    [18] EGGERS A J, SYVERTSON C A. Aircraft configurations developing high lift-drag ratios at high supersonic speeds: NACA-RM-A55L05 [R]. Washing, D. C. : NASA, 1956.
    [19] WILLIAM H, ALBAN III, KARL H, et al. Aerodynamic re-entry vehicle control with active and passive yaw flaps: USA, 7611095[P]. 2009-11-03.
    [20] 唐伟, 李为吉, 高晓成, 等. 削面/配平翼飞行器的气动计算及分析[J]. 西北工业大学学报, 2004, 22(5): 541-544. doi: 10.3969/j.issn.1000-2758.2004.05.001

    TANG W, LI W J, GAO X C, et al. Aerodynamic prediction and analysis for a reentry vehicle with slice-ailerons[J]. Journal of Northwestern Polytechnical University, 2004, 22(5): 541-544(in Chinese). doi: 10.3969/j.issn.1000-2758.2004.05.001
    [21] 桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 020844.

    GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 020844(in Chinese).
    [22] 刘磊, 代光月, 曾磊, 等. 气动力/热与结构多场耦合试验模型方案初步设计[J]. 航空学报, 2017, 38(11): 221165.

    LIU L, DAI G Y, ZENG L, et al. Preliminary test model design of fluid-thermal-structural interaction problems[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 221165(in Chinese).
    [23] 邱波, 张昊元, 国义军, 等. 高超声速飞行器表面横缝旋涡结构及气动热环境数值模拟[J]. 航空学报, 2015, 36(11): 3515-3521.

    QIU B, ZHANG H Y, GUO Y J, et al. Numerical investigation for vortexes and aerodynamic heating environment on transverse gap on hypersonic vehicle surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(11): 3515-3521(in Chinese).
    [24] 张昊元, 宗文刚, 桂业伟. 高超声速飞行器前缘缝隙流动数值模拟研究[J]. 宇航学报, 2014, 35(8): 893-900. doi: 10.3873/j.issn.1000-1328.2014.08.005

    ZHANG H Y, ZONG W G, GUI Y W. Numerical investigation of flow in leading-edge gap of hypersonic vehicle[J]. Journal of Astronautics, 2014, 35(8): 893-900(in Chinese). doi: 10.3873/j.issn.1000-1328.2014.08.005
    [25] 李素循. 典型外形高超声速流动特性[M]. 北京: 国防工业出版社, 2007.

    LI S X. Hypersonic flow characteristics of typical shape[M]. Beijing: National Defense Industry Press, 2007 (in Chinese).
    [26] 李海燕. 高超声速高温气体流场的数值模拟[D]. 绵阳: 中国空气动力研究与发展中心, 2007.

    LI H Y. Numerical simulation of hypersonic and high temperature gas flowfields[D]. Mianyang : China Aerodynamics Research and Development Center, 2007.
    [27] 丁峰. 吸气式高超声速飞行器内外流一体化“全乘波”气动设计理论和方法研究[D]. 长沙: 国防科学技术大学, 2016.

    DING F. Research of a novel airframe/inlet integrated full-waverider aerodynamic design methodology for air-breathing hypersonic vehicles[D]. Changsha: National University of Defense Technology, 2016 (in Chinese).
    [28] 陈冰雁, 徐国武. 临近空间高升阻比布局高速气动性能对比[J]. 力学季刊, 2014, 35(3): 464-472.

    CHEN B Y, XU G W. Comparison of aerodynamic characteristic of near space high lift-drag ratio configuration[J]. Chinese Quarterly of Mechanics, 2014, 35(3): 464-472(in Chinese).
    [29] 唐伟. 新一代航天机动飞行器气动设计研究[D]. 西安: 西北工业大学, 2005.

    TANG W. Aerodynamic design study for new generation aeronautical maneuverable vehicle[D]. Xi’an : Northwestern Polytechnical University, 2005.
    [30] 马强, 唐伟, 张鲁民. 带控制舵双锥体气动力工程计算方法研究[J]. 宇航学报, 2003, 24(6): 552-554. doi: 10.3321/j.issn:1000-1328.2003.06.002

    MA Q, TANG W, ZHANG L M. Engineering prediction method for aerodynamics of biconic vehicle with flaps[J]. Journal of Astronautics, 2003, 24(6): 552-554(in Chinese). doi: 10.3321/j.issn:1000-1328.2003.06.002
    [31] 唐伟, 张勇, 李为吉, 等. 二次曲线截面弹身的气动设计及优化[J]. 宇航学报, 2004, 25(4): 429-433.

    TANG W, ZHANG Y, LI W J, et al. Aerodynamic design and optimization for vehicles with conic cross section[J]. Journal of Astronautics, 2004, 25(4): 429-433(in Chinese).
    [32] FENG Y, TANG W, GUI Y W. Aerodynamic configuration optimization by the integration of aerodynamics, aerothermodynamics and trajectory for hypersonic vehicles[J]. Chinese Science Bulletin, 2014, 59(33): 4608-4615. doi: 10.1007/s11434-014-0534-9
  • 加载中
图(31)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  24
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-04-13
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答