留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速滑翔飞行器预测校正闭环协同末制导方法

郑金库 唐胜景 郭杰

郑金库,唐胜景,郭杰. 高超声速滑翔飞行器预测校正闭环协同末制导方法[J]. 北京航空航天大学学报,2023,49(11):3188-3196 doi: 10.13700/j.bh.1001-5965.2022.0043
引用本文: 郑金库,唐胜景,郭杰. 高超声速滑翔飞行器预测校正闭环协同末制导方法[J]. 北京航空航天大学学报,2023,49(11):3188-3196 doi: 10.13700/j.bh.1001-5965.2022.0043
ZHENG J K,TANG S J,GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3188-3196 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0043
Citation: ZHENG J K,TANG S J,GUO J. Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3188-3196 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0043

高超声速滑翔飞行器预测校正闭环协同末制导方法

doi: 10.13700/j.bh.1001-5965.2022.0043
详细信息
    作者简介:

    郑金库 男,硕士研究生。主要研究方向:飞行器制导与控制

    唐胜景 男,博士,教授,博士生导师。主要研究方向:飞行器总体设计、飞行动力学与控制

    郭杰 男,博士,副教授,硕士生导师。主要研究方向:飞行器总体设计、飞行动力学与控制

    通讯作者:

    E-mail:tangsj@bit.edu.cn

  • 中图分类号: V249.1;TJ765.3

Closed-loop cooperative terminal guidance law based on predictor-corrector for hypersonic gliding vehicles

More Information
  • 摘要:

    针对能量持续衰减的高超声速滑翔飞行器末制导段时间协同问题,提出一种预测飞行时间并校正飞行剖面的协同制导方法。设计了一种带有负比例导引系数的参数化飞行剖面,在辨识气动参数后快速预测剩余飞行时间;通过数值算法修正飞行剖面参数,并输出制导指令,满足单飞行器时间约束制导要求;设计闭环协同策略,在分析飞行器时间调整能力后,各飞行器协调期望飞行时间,再自主规划飞行剖面以同时攻击目标。仿真结果表明:预测校正闭环协同制导方法可以满足时间协同末制导任务需求,落点误差小于5 m,相对时间误差小于1 s。

     

  • 图 1  相对运动关系[18]

    Figure 1.  Relationship of relative motion[18]

    图 2  侧向比例导引系数剖面

    Figure 2.  Lateral proportional guidance coefficient profile

    图 3  ${t_{\rm{f}}}$与${t_1}$关系

    Figure 3.  Relationship between ${t_{\rm{f}}}$ and ${t_1}$

    图 4  基于时间预测校正的闭环协同末制导框架

    Figure 4.  Closed-loop cooperative terminal guidance law based on time predictor-corrector

    图 5  标准条件下飞行器轨迹

    Figure 5.  Vehicle trajectory in nominal conditions

    图 6  扰动条件下仿真结果

    Figure 6.  Simulation results in disturbance conditions

    图 7  闭环协同任务仿真结果

    Figure 7.  Simulation results of closed-loop cooperative task

    图 8  闭环协同任务蒙特卡罗仿真结果

    Figure 8.  Monte Carlo simulation results of closed-loop cooperative task

    表  1  初始状态

    Table  1.   Initial state

    V/(m·s−1)$\gamma $/(o)$\psi $/(o)x/kmy/kmz/km
    1300−10−8570−1020
    下载: 导出CSV

    表  2  飞行时间约束及终端误差

    Table  2.   Flight time constraints and terminal errors

    任务期望飞行
    时间/s
    实际飞行
    时间/s
    飞行时间
    误差/s
    终端位置
    误差/m
    18079.67−0.333.59
    28584.28−0.720.49
    下载: 导出CSV

    表  3  初始状态偏差限

    Table  3.   Initial state deviation limit

    V/(m·s−1)$\gamma $/(o)$\psi $/(o)x/kmy/kmz/m
    ±50±1±1±1±1±100
    下载: 导出CSV

    表  4  参数偏差限

    Table  4.   Parameter deviation limit %

    升力系数阻力系数质量大气密度
    ±15±15±1±15
    下载: 导出CSV

    表  5  协同任务初始状态

    Table  5.   Initial state in cooperative task

    飞行器V/(m·s−1)$\gamma $/(o)$\psi $/(o)x/kmy/kmz/km
    飞行器11400−10−110305520
    飞行器21400−10−90602020
    飞行器31400−10−5040−5020
    下载: 导出CSV

    表  6  协同任务结果

    Table  6.   Results of time cooperative task

    飞行器飞行时间/s终端位置误差/m
    飞行器169.011.50
    飞行器268.911.16
    飞行器369.342.61
    下载: 导出CSV
  • [1] 李俊, 江振宇. 一种高超声速滑翔再入在线轨迹规划算法[J]. 北京航空航天大学学报, 2020, 46(3): 579-587.

    LI J, JIANG Z Y. Online trajectory planning algorithm for hypersonic glide re-entry problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(3): 579-587(in Chinese).
    [2] 岳彩红, 唐胜景, 王肖, 等. 高超声速伸缩式变形飞行器再入制导方法[J]. 北京航空航天大学学报, 2021, 47(6): 1288-1298.

    YUE C H, TANG S J, WANG X, et al. Reentry guidance method of hypersonic telescopic deformable vehicle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(6): 1288-1298(in Chinese).
    [3] LIU X F, SHEN Z J, LU P. Entry trajectory optimization by second-order cone programming[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(2): 227-241. doi: 10.2514/1.G001210
    [4] 胡锦川, 张晶, 陈万春. 高超声速飞行器平稳滑翔弹道解析解及其应用[J]. 北京航空航天大学学报, 2016, 42(5): 961-968.

    HU J C, ZHANG J, CHEN W C. Analytical solutions of steady glide trajectory for hypersonic vehicle and planning application[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(5): 961-968(in Chinese).
    [5] 王荣刚, 许志, 唐硕, 等. 高超声速滑翔再入定向定速打击末制导算法[J]. 宇航学报, 2019, 40(6): 655-665.

    WANG R G, XU Z, TANG S, et al. Terminal guidance with impact angle constraint and deceleration control for a hypersonic glide-reentry vehicle[J]. Journal of Astronautics, 2019, 40(6): 655-665(in Chinese).
    [6] 石国祥, 张科, 王佩, 等. 基于侧向机动能力预测的高超声速飞行器再入制导算法研究[J]. 西北工业大学学报, 2020, 38(3): 523-532. doi: 10.1051/jnwpu/20203830523

    SHI G X, ZHANG K, WANG P, et al. Algorithm of reentry guidance for hypersonic vehicle based on lateral maneuverability prediction[J]. Journal of Northwestern Polytechnical University, 2020, 38(3): 523-532(in Chinese). doi: 10.1051/jnwpu/20203830523
    [7] 王肖, 郭杰, 唐胜景, 等. 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019, 40(3): 322565.

    WANG X, GUO J, TANG S J, et al. Time-cooperative entry guidance based on analytical profile[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(3): 322565(in Chinese).
    [8] 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1): 020256.

    ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1): 020256(in Chinese).
    [9] HE S M, LIN D F. Three-dimensional optimal impact time guidance for antiship missiles[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(4): 941-948. doi: 10.2514/1.G003971
    [10] YAN X H, ZHU J H, KUANG M C, et al. A computational-geometry-based 3-dimensional guidance law to control impact time and angle[J]. Aerospace Science and Technology, 2020, 98: 105672. doi: 10.1016/j.ast.2019.105672
    [11] DONG W, WEN Q Q, XIA Q L, et al. Multiple-constraint cooperative guidance based on two-stage sequential convex programming[J]. Chinese Journal of Aeronautics, 2020, 33(1): 296-307. doi: 10.1016/j.cja.2019.07.026
    [12] 李新三, 汪立新, 王明建, 等. 基于MPSC和CPN制导方法的协同制导律[J]. 北京航空航天大学学报, 2016, 42(9): 1857-1863.

    LI X S, WANG L X, WANG M J, et al. Cooperative guidance law based on MPSC and CPN guidance method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(9): 1857-1863(in Chinese).
    [13] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6): 1605-1611.

    ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6): 1605-1611(in Chinese).
    [14] WANG X F, ZHENG Y Y, LIN H. Integrated guidance and control law for cooperative attack of multiple missiles[J]. Aerospace Science and Technology, 2015, 42: 1-11. doi: 10.1016/j.ast.2014.11.018
    [15] WANG X F, ZHANG Y W, LIU D Z, et al. Three-dimensional cooperative guidance and control law for multiple reentry missiles with time-varying velocities[J]. Aerospace Science and Technology, 2018, 80: 127-143. doi: 10.1016/j.ast.2018.07.011
    [16] ZHAO E J, WANG S Y, CHAO T, et al. Multiple missiles cooperative guidance based on leader-follower strategy[C]//Proceedings of the IEEE Chinese Guidance, Navigation and Control Conference. Piscataway: IEEE Press, 2015: 1163-1167.
    [17] SINHA A, KUMAR S R. Supertwisting control-based cooperative salvo guidance using leader-follower approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 3556-3565. doi: 10.1109/TAES.2020.2974044
    [18] WANG J W, ZHANG R. Terminal guidance for a hypersonic vehicle with impact time control[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(8): 1790-1798. doi: 10.2514/1.G003540
    [19] 唐博, 席建祥, 刘太阳, 等. 俯冲段高超声速飞行器有限时间协同制导律设计[J]. 北京航空航天大学学报, 2021, 47(10): 2105-2117.

    TANG B, XI J X, LIU T Y, et al. Design of finite-time cooperative guidance law for hypersonic vehicles in dive phase[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(10): 2105-2117(in Chinese).
    [20] 崔乃刚, 卢宝刚, 傅瑜, 等. 基于卡尔曼滤波的再入飞行器气动参数辨识[J]. 中国惯性技术学报, 2014, 22(6): 755-758.

    CUI N G, LU B G, FU Y, et al. Aerodynamic parameter identification of a reentry vehicle based on Kalman filter method[J]. Journal of Chinese Inertial Technology, 2014, 22(6): 755-758(in Chinese).
    [21] PATTERSON M A, RAO A V. GPOPS-Ⅱ: A MATLAB software for solving multiple-phase optimal control problems using HP-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming[J]. ACM Transactions on Mathematical Software, 2010, 41(1): 1-37.
  • 加载中
图(8) / 表(6)
计量
  • 文章访问数:  630
  • HTML全文浏览量:  30
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-03-31
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答