留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑温度影响的干摩擦接触分子动力学研究

许洪斌 樊江 倪铭 李星星 荆甫雷

许洪斌,樊江,倪铭,等. 考虑温度影响的干摩擦接触分子动力学研究[J]. 北京航空航天大学学报,2023,49(11):3031-3038 doi: 10.13700/j.bh.1001-5965.2022.0045
引用本文: 许洪斌,樊江,倪铭,等. 考虑温度影响的干摩擦接触分子动力学研究[J]. 北京航空航天大学学报,2023,49(11):3031-3038 doi: 10.13700/j.bh.1001-5965.2022.0045
XU H B,FAN J,NI M,et al. Molecular dynamics study on dry friction damper with temperature influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3031-3038 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0045
Citation: XU H B,FAN J,NI M,et al. Molecular dynamics study on dry friction damper with temperature influence[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):3031-3038 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0045

考虑温度影响的干摩擦接触分子动力学研究

doi: 10.13700/j.bh.1001-5965.2022.0045
基金项目: 国家自然基金(51775015) ;国家科技重大专项(J2019-IV-0002-0069)
详细信息
    通讯作者:

    E-mail:fanjiang@buaa.edu.cn

  • 中图分类号: V214.1;TH117.1

Molecular dynamics study on dry friction damper with temperature influence

Funds: National Natural Science Foundation of China (51775015); National Science and Technology Major Project (J2019-IV-0002-0069)
More Information
  • 摘要:

    基于多尺度方法对干摩擦行为进行预测已成为当前研究热点。对于航空发动机等高温机械系统,温度对干摩擦行为影响至关重要。针对高温影响下微动界面摩擦行为开展分子动力学建模与分析,研究不同温度下微凸体的切向碰撞过程;考虑温度的升高使摩擦界面微凸体黏着作用增强,提出不同于赫兹接触理论预测的真实面积计算方法;基于所建的分子动力学模型和G-W接触模型,研究不同温度下接触面的摩擦系数,与实验测量的摩擦系数结果吻合,验证所提方法的正确性。对于在高温环境下接触、摩擦及微动等界面力学问题的研究提供了可借鉴的方法,同时为高温旋转机械动力学多尺度方法提供了可参考的解决手段。

     

  • 图 1  干摩擦阻尼器摩擦过程本质为微凸体碰撞过程

    Figure 1.  Dry friction damper friction process is essentially a micro-convex body collision process

    图 2  微凸体切向碰撞模型示意图[9-13]

    Figure 2.  Schematic diagram of convex body tangential collision model[9-13]

    图 3  不同温度下微凸体切向碰撞过程中法向力曲线

    Figure 3.  Normal force curves during tangential collisions of microconvex bodies at different temperatures

    图 4  不同温度下微凸体切向碰撞过程中切向力曲线

    Figure 4.  Tangential force curves during tangential collisions of microconvex bodies at different temperatures

    图 5  不同温度下微凸体碰撞后变形情况

    Figure 5.  Deformation of microconvex bodies after collision at different temperatures

    图 6  微凸体切向碰撞过程平均接触力随温度变化

    Figure 6.  Variation of the average contact force with temperature during tangential collisions of microconvex bodies

    图 7  真实接触投影面积求解方法

    Figure 7.  Method of solving for real contact projection area

    图 8  不同压入深度下的真实接触面积

    Figure 8.  True contact area at different press-in depths

    图 9  真实接触面积曲线

    Figure 9.  True contact area curve

    图 10  基于G-W模型的粗糙表面微凸体接触示意图

    Figure 10.  Schematic diagram of micro-convex body contact on a rough surface based on G-W model

    图 11  G-W模型粗糙表面接触压力与接触深度关系曲线

    Figure 11.  G-W model rough surface contact pressure versus contact depth curve

    图 12  单微凸体不同干涉深度下滑动摩擦系数

    Figure 12.  Sliding friction coefficient of a single micro-convex body at different interference depths

    图 13  粗糙表面滑动摩擦过程摩擦系数求解

    Figure 13.  Coefficient of friction solution for sliding friction processes on rough surfaces

    图 14  镍金属表面摩擦系数实验测量结果

    Figure 14.  Experimental measurements of coefficient of friction on nickel metal surfaces

    图 15  不同温度下的摩擦系数

    Figure 15.  Coefficient of friction at different temperatures

  • [1] 李琳, 刘久周, 李超. 航空发动机中的干摩擦阻尼器及其设计技术研究进展[J]. 航空动力学报, 2016, 31(10): 2305-2317.

    LI L, LIU J Z, LI C. Review of the dry friction dampers in aero-engine and their design technologies[J]. Journal of Aerospace Power, 2016, 31(10): 2305-2317(in Chinese).
    [2] 何冰冰. 涡轮叶片干摩擦阻尼器动力学特性及减振特性研究[D]. 西安: 西北工业大学, 2018.

    HE B B. Dynamic and vibration reduction characteristics analysis of turbine blades with dry friction damper[D]. Xi’an: Northwestern Polytechnical University, 2018 (in Chinese).
    [3] 单颖春, 郝燕平, 朱梓根, 等. 干摩擦阻尼块在叶片减振方面的应用与发展[J]. 航空动力学报, 2001, 16(3): 218-223.

    SHAN Y C, HAO Y P, ZHU Z G, et al. Application and development of platform friction damper for depressing resonant vibration of blades[J]. Journal of Aerospace Power, 2001, 16(3): 218-223(in Chinese).
    [4] ABRAHAM F F, BROUGHTON J Q, BERNSTEIN N, et al. Spanning the length scales in dynamic simulation[J]. Computers in Physics, 1998, 12(6): 538. doi: 10.1063/1.168756
    [5] BROUGHTON J Q, ABRAHAM F F, BERNSTEIN N, et al. Concurrent coupling of length scales: Methodology and application[J]. Physical Review B, 1999, 60(4): 2391-2403. doi: 10.1103/PhysRevB.60.2391
    [6] LUAN B Q, HYUN S, MOLINARI J F, et al. Multiscale modeling of two-dimensional contacts[J]. Physical Review E, 2006, 74(4): 046710. doi: 10.1103/PhysRevE.74.046710
    [7] PEN H, BAI Q, LIANG Y C, et al. Multiscale simulation of nanometric cutting of single crystal copper effect of different cutting speeds[J]. Acta Metallurgica Sinica (English Letters), 2009, 22: 440-446. doi: 10.1016/S1006-7191(08)60121-0
    [8] 赵晟, 江五贵. 纳米尺度下切削过程的准连续介质力学模拟[J]. 摩擦学学报, 2009, 29(6): 505-511. doi: 10.3321/j.issn:1004-0595.2009.06.004

    ZHAO S, JIANG W G. Quasicontinuum simulations of nano-cutting process[J]. Tribology, 2009, 29(6): 505-511(in Chinese). doi: 10.3321/j.issn:1004-0595.2009.06.004
    [9] SHIARI B, MILLER R E, KLUG D D. Multiscale simulation of material removal processes at the nanoscale[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(11): 2384-2405. doi: 10.1016/j.jmps.2007.03.018
    [10] 樊江, 戴琦晖, 王晋斌, 等. 带涂层干摩擦阻尼器的分子动力学仿真[J]. 航空动力学报, 2018, 33(10): 2333-2342.

    FAN J, DAI Q H, WANG J B, et al. Molecular dynamics simulations of dry friction dampers with coating[J]. Journal of Aerospace Power, 2018, 33(10): 2333-2342(in Chinese).
    [11] 潘帅航, 尹念, 张执南. 微动界面连续干摩擦行为的分子动力学模拟[J]. 机械工程学报, 2018, 54(3): 82-87. doi: 10.3901/JME.2018.03.082

    PAN S H, YIN N, ZHANG Z N. Molecular dynamics simulation for continuous dry friction on fretting interfaces[J]. Journal of Mechanical Engineering, 2018, 54(3): 82-87(in Chinese). doi: 10.3901/JME.2018.03.082
    [12] ZHENG X, ZHU H T, KOSASIH B, et al. A molecular dynamics simulation of boundary lubrication: The effect of n-alkanes chain length and normal load[J]. Wear, 2013, 301(1-2): 62-69. doi: 10.1016/j.wear.2013.01.052
    [13] ZHENG X, ZHU H T, TIEU A K, et al. Roughness and lubricant effect on 3D atomic asperity contact[J]. Tribology Letters, 2014, 53(1): 215-223. doi: 10.1007/s11249-013-0259-y
    [14] LIU X M, LIU Z L, WEI Y G. Nanoscale friction behavior of the Ni-film/substrate system under scratching using MD simulation[J]. Tribology Letters, 2012, 46(2): 167-178. doi: 10.1007/s11249-012-9932-9
    [15] 罗旋, 费维栋, 李超, 等. 材料科学中的分子动力学模拟研究进展[J]. 材料科学与工艺, 1996, 4(1): 124-128.

    LUO X, FEI W D, LI C, et al. Advance of molecular dynamics simulation in materials science[J]. Material Science and Technology, 1996, 4(1): 124-128(in Chinese).
    [16] 杨继明. 纳米尺度摩擦行为的分子动力学模拟研究[D]. 重庆: 重庆大学, 2012.

    YANG J M. Molecular dynamics simulation of nano-scale friction behavior[D]. Chongqing: Chongqing University, 2012 (in Chinese).
    [17] GREENWOOD J, WILLIAMSON J. Contact of nominally flat surfaces[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1966, 295: 300-319.
    [18] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3): 1695-1697. doi: 10.1103/PhysRevA.31.1695
    [19] 李强. 接触力学与摩擦学的原理及其应用[M]. 北京: 清华大学出版社, 2011.

    LI Q. Principles and applications of contact mechanics and tribology [M]. Beijing: Tsinghua University Press, 2011(in Chinese).
    [20] 刘如铁, 李溪滨, 苏春明, 等. 镍基高温自润滑材料的摩擦学特性研究[J]. 粉末冶金材料科学与工程, 1998, 3(3): 206-210.

    LIU R T, LI X B, SU C M, et al. Study on the tribological characteristics of high-temperature self-lubricating nickel-base material[J]. Materials Science and Engineering of Powder Metallargy, 1998, 3(3): 206-210(in Chinese).
    [21] 张甜甜, 黄传兵, 兰昊, 等. 镍基耐高温自润滑刷式封严涂层研究[J]. 航空制造技术, 2017, 60(8): 24-29.

    ZHANG T T, HUANG C B, LAN H, et al. Investigation of Ni-based brush seal coatings with self-lubricating property at elevated temperature[J]. Aeronautical Manufacturing Technology, 2017, 60(8): 24-29(in Chinese).
    [22] DAW M S, BASKES M I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals[J]. Physical Review B, 1984, 29(12): 6443-6453. doi: 10.1103/PhysRevB.29.6443
    [23] MA G L, YANG J Q, LIU Y, et al. Friction and wear behavior of nanocrystalline nickel in air and vacuum[J]. Tribology Letters, 2013, 49(3): 481-490. doi: 10.1007/s11249-012-0089-3
  • 加载中
图(15)
计量
  • 文章访问数:  417
  • HTML全文浏览量:  27
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23
  • 录用日期:  2022-02-25
  • 网络出版日期:  2022-03-09
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答