留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型树脂基复合材料引射因子测试

王丽燕 陈伟华 蒋云淞 张晗翌 陈智铭 徐芸

王丽燕,陈伟华,蒋云淞,等. 新型树脂基复合材料引射因子测试[J]. 北京航空航天大学学报,2023,49(11):2960-2967 doi: 10.13700/j.bh.1001-5965.2022.0056
引用本文: 王丽燕,陈伟华,蒋云淞,等. 新型树脂基复合材料引射因子测试[J]. 北京航空航天大学学报,2023,49(11):2960-2967 doi: 10.13700/j.bh.1001-5965.2022.0056
WANG L Y,CHEN W H,JIANG Y S,et al. Measurement of ejection factor of new resin matrix composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2960-2967 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0056
Citation: WANG L Y,CHEN W H,JIANG Y S,et al. Measurement of ejection factor of new resin matrix composites[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2960-2967 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0056

新型树脂基复合材料引射因子测试

doi: 10.13700/j.bh.1001-5965.2022.0056
基金项目: 中央军委科技委员会基础加强类项目(0327004); 国家自然科学基金(U20B2059)
详细信息
    通讯作者:

    E-mail:wang_liyan12@163.com

  • 中图分类号: TK124

Measurement of ejection factor of new resin matrix composites

Funds: Basic Research Project of Science and Technology Commission of the Central Military Commission(0327004); National Natural Science Foundation of China (U20B2059)
More Information
  • 摘要:

    通过合理设计对比模型,提出一种新型树脂基复合材料引射因子测试方法,针对新型树脂基复合材料开展电弧风洞试验,获得树脂基材料有热解气体引射和无热解气体引射时壁面热流密度,研究树脂基材料在特定热环境条件下的引射效应,获取能够评价新型树脂基材料引射效应的引射因子。结果表明:试验状态下,石英酚醛复合材料炭化速度大于石英杂化酚醛复合材料;石英酚醛复合材料引射因子约为0.825,在实际设计中此类材料需要考虑引射效应对表面热流的影响;石英杂化酚醛复合材料引射因子约为1,热解气体引射产生的热阻塞效应基本可以忽略。

     

  • 图 1  设备安装示意图

    Figure 1.  Equipment installation diagram

    图 2  试验模拟件照片

    Figure 2.  Experiment simulated sample photos

    图 3  分层温度传感器示意图

    Figure 3.  Diagram of layered carbonization plant

    图 4  石英酚醛复合材料加热400 s后各层温度

    Figure 4.  Temperature of layers of quartz phenolic composite heated for 400 s

    图 5  假设炭化厚度12 mm时加热50 s后各层温度

    Figure 5.  Temperature of each layer after heating 50 s assuming that carbonized 12 mm thickness

    图 6  石英酚醛复合材料各层温度随时间变化

    Figure 6.  Layer temperature vary with time for quartz phenolic composites

    图 7  石英酚醛复合材料各层温度测量差随时间变化

    Figure 7.  Measure difference of layer temperature vary with time for quartz phenolic composites

    图 8  石英杂化酚醛复合材料各层温度随时间变化

    Figure 8.  Layer temperature vary with time for quartz hybrid phenolic composites

    图 9  石英杂化酚醛复合材料各层温度测量差随时间变化

    Figure 9.  Measure difference of layer temperature vary with time for quartz hybrid phenolic composites

    图 10  石英酚醛复合材料炭化深度随时间变化

    Figure 10.  Carbonation depth vary with time for quartz phenolic composites

    图 11  石英杂化酚醛复合材料炭化层深度随时间变化

    Figure 11.  Carbonation depth vary with time for quartz hybrid phenolic composites

    图 12  石英酚醛复合材料表面热流测量结果

    Figure 12.  Surface heat flux measurements for quartz phenolic composites

    图 13  石英酚醛复合材料表面热流随时间变化

    Figure 13.  Surface heat flux vary with time for quartz phenolic composites

    图 14  石英酚醛复合材料引射因子随时间变化

    Figure 14.  Ejector factor vary with time for quartz phenolic composites

    图 15  石英杂化酚醛复合材料表面热流测量结果

    Figure 15.  Surface heat flux measurements for quartz hybrid phenolic composites

    图 16  石英杂化酚醛复合材料表面热流随时间变化

    Figure 16.  Surface heat flux vary with time for quartz hybrid phenolic composites

    图 17  石英杂化酚醛复合材料引射因子随时间变化

    Figure 17.  Ejector factor vary with time for quartz hybrid phenolic composites

    表  1  材料基础物性参数

    Table  1.   Fundamental physical parameters of materials

    材料 密度/
    (kg·m−3
    热导率/
    (W·m−1·K−1
    比热容/
    (J·kg−1·K−1
    xy方向拉
    伸强度/MPa
    压缩强
    度/MPa
    石英酚醛 0.91 0.22 1.1 20.8 66.7
    石英杂
    化酚醛
    0.496 0.05 1.0 29.9 2.5
    下载: 导出CSV
  • [1] 李玮洁. 变密度炭化复合材料的热防护模型及其数值模拟[D]. 北京: 北京交通大学, 2017.

    LI W J. Thermal protection models and numerical simulation for variable density charring materials[D]. Beijing: Beijing Jiaotong University, 2017 (in Chinese).
    [2] 刘骁, 国义军, 刘伟, 等. 碳化材料三维烧蚀热响应有限元计算研究[J]. 宇航学报, 2016, 37(9): 1150-1156.

    LIU X, GUO Y J, LIU W, et al. Numerical simulation research on three-dimensional ablative thermal response of charring ablators[J]. Journal of Astronautics, 2016, 37(9): 1150-1156(in Chinese).
    [3] SHI S B, LI L J, LIANG J, et al. Surface and volumetric ablation behaviors of SiFRP composites at high heating rates for thermal protection applications[J]. International Journal of Heat and Mass Transfer, 2016, 102: 1190-1198. doi: 10.1016/j.ijheatmasstransfer.2016.06.085
    [4] 李仲平. 防热复合材料发展与展望[J]. 复合材料学报, 2011, 28(2): 1-9.

    LI Z P. Major advancement and development trends of TPS composites[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 1-9(in Chinese).
    [5] 时圣波. 高硅氧/酚醛复合材料的烧蚀机理及热—力学性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    SHI S B. Ablation mechanism and thermo-mechanical behavior of silica/phenolic composites[D]. Harbin: Harbin Institute of Technology, 2013 (in Chinese).
    [6] LI W J, HUANG H M, XU X L. A coupled thermal/fluid/chemical/ablation method on surface ablation of charring composites[J]. International Journal of Heat and Mass Transfer, 2017, 109: 725-736. doi: 10.1016/j.ijheatmasstransfer.2017.02.052
    [7] 杨琼梁, 史晓鸣, 许斌, 等. 烧蚀防热层与结构耦合热传导分析的交替计算法[J]. 宇航学报, 2011, 32(8): 1854-1858.

    YANG Q L, SHI X M, XU B, et al. Alternative algorithm for heat transfer analysis of ablative protection layer coupled with structure[J]. Journal of Astronautics, 2011, 32(8): 1854-1858(in Chinese).
    [8] 郭瑾, 黄海明. 热解气体燃烧对炭化复合材料烧蚀热响应影响规律[J]. 中国空间科学技术, 2020, 40(6): 41-47.

    GUO J, HUANG H M. Effect of pyrolysis gases combustion on surface ablation of charring material[J]. Chinese Space Science and Technology, 2020, 40(6): 41-47(in Chinese).
    [9] 杨凯威, 张杨, 梁欢, 等. 高超声速飞行器热流密度/分层温度/碳化层研究[J]. 中国空间科学技术, 2018, 38(3): 33-39.

    YANG K W, ZHANG Y, LIANG H, et al. Study on heat flux density/stratified temperature/carbonization layer of hypersonic vehicle[J]. Chinese Space Science and Technology, 2018, 38(3): 33-39(in Chinese).
    [10] MATSUURA Y, HIRAI K, KAMITA T, et al. A challenge of modeling thermo-mechanical response of silica-phenolic composites under high heating rates[C]// Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2019.
    [11] SAKAI T, TOMITA M, SUZUKI T, et al. Post-test sample analysis of fiber reinforced plastic using arcjet[C]// Proceedings of the 10th AIAA/ASME Joint Thermophilic and Heat Transfer Conference. Reston: AIAA, 2010.
    [12] MILOS F, CHEN Y K, GOKCEN T. Non-equilibrium ablation of phenolic impregnated carbon ablator[C]// Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2010.
    [13] 姜贵庆, 刘连元. 高速气流传热与烧蚀热防护[M]. 北京: 国防工业出版社, 2003: 52-66.

    JIANG G Q, LIU L Y. Heat transfer of hypersonic gas and ablation thermal protection[M]. Beijing: National Defense Industry Press, 2003: 52-66 (in Chinese).
    [14] 黄志澄. 高超声速飞行器空气动力学[M]. 北京: 国防工业出版社, 1995.

    HUANG Z C. Aerodynamics of hypersonic vehicle[M]. Beijing: National Defense Industry Press, 1995 (in Chinese).
    [15] 郭梅梅, 匡松连, 华小玲, 等. 树脂基复合材料的分解防热效率[J]. 宇航材料工艺, 2012, 42(2): 58-60.

    GUO M M, KUANG S L, HUA X L, et al. Heat-resistant effect of pyrolysis of resin composites[J]. Aerospace Materials & Technology, 2012, 42(2): 58-60(in Chinese).
    [16] 王国雄, 马鹏飞. 弹头技术(上)[M]. 北京: 中国宇航出版社, 1993.

    WANG G X, MA P F. Warhead technology[M]. Beijing: China Aerospace Publishing House, 1993 (in Chinese).
  • 加载中
图(17) / 表(1)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  24
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 录用日期:  2022-04-01
  • 网络出版日期:  2022-04-13
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答