留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“北航空事卫星一号”监视载荷的统计性能

刘海涛 杨宁 李冬霞 李雪缘 张学军 安强 张芷恩

刘海涛,杨宁,李冬霞,等. “北航空事卫星一号”监视载荷的统计性能[J]. 北京航空航天大学学报,2023,49(11):2883-2889 doi: 10.13700/j.bh.1001-5965.2022.0057
引用本文: 刘海涛,杨宁,李冬霞,等. “北航空事卫星一号”监视载荷的统计性能[J]. 北京航空航天大学学报,2023,49(11):2883-2889 doi: 10.13700/j.bh.1001-5965.2022.0057
LIU H T,YANG N,LI D X,et al. Statistical performance of surveillance payload of Beihang Aeronautical Satellite-1[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2883-2889 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0057
Citation: LIU H T,YANG N,LI D X,et al. Statistical performance of surveillance payload of Beihang Aeronautical Satellite-1[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2883-2889 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0057

“北航空事卫星一号”监视载荷的统计性能

doi: 10.13700/j.bh.1001-5965.2022.0057
基金项目: 国家重点研发计划(2016YFB0502402);北京市科学研究与研究生培养共建项目(25500002019117000)
详细信息
    通讯作者:

    E-mail:htliucauc@qq.com

  • 中图分类号: V355.1

Statistical performance of surveillance payload of Beihang Aeronautical Satellite-1

Funds: National Key R & D Program of China (2016YFB0502402); Beijing Scientific Research and Postgraduate Training Co-construction Project (25500002019117000)
More Information
  • 摘要:

    “北航空事卫星一号”是广域航空器监视科学试验卫星。为了评估“北航空事卫星一号”监视载荷的性能,提出了ADS-B系统监视载荷的性能指标及统计方法,并利用“北航空事卫星一号”在轨观测数据,统计给出了“北航空事卫星一号”监视载荷的性能指标,包括监视覆盖半径、检测概率、识别概率、位置报告更新间隔及载荷消息速率。统计结果表明:“北航空事卫星一号”具备了在全球范围内对运输航空及通用航空器监视跟踪的能力;监视覆盖半径达1710 km,检测概率大于35%,识别概率大于68%,位置报告更新间隔小于8 s。

     

  • 图 1  监视载荷性能评估框图

    Figure 1.  Block diagram of surveillance payload performance evaluation

    图 2  航空器累积位置分布图

    Figure 2.  Aircraft cumulative position distribution map

    图 3  SDM6284航班航迹(运输航空器,巡航阶段)

    Figure 3.  Flight track of SDM6284 (transport aircraft, cruise phase)

    图 4  VIV4399航班航迹(运输航空器,起飞阶段)

    Figure 4.  Flight track of VIV4399 (transport aircraft, takeoff phase)

    图 5  B7757通用航空器航迹

    Figure 5.  Track of B7757 general aviation aircraft

    图 6  监视覆盖半径的频率直方图

    Figure 6.  Frequency histogram for monitoring coverage radius

    图 7  检测概率与航空器数量的关系

    Figure 7.  Relationship between probability of detection and aircraft number

    图 8  识别概率与航空器数量的关系

    Figure 8.  Relationship between probability of identification and aircraft number

    图 9  位置报告更新间隔与航空器数量的关系

    Figure 9.  Relationship between location report update interval and aircraft number

    图 10  载荷消息速率与航空器数量的关系

    Figure 10.  Relationship between payload message rate and aircraft number

    表  1  试验卫星轨道参数

    Table  1.   Orbit parameters of test satellite

    参数数值
    远地点/km476
    近地点/km464
    轨道倾角/(°)97.25
    高度/km484.24
    速度/(km·s−1)7.62
    周期/min93.84
    下载: 导出CSV

    表  2  典型空域位置报告更新间隔

    Table  2.   Typical airspace location report update interval

    空域类别观测日期与时间(UTC)空域名称航空器数量/架位置报告更新间隔/s
    低密度空域2021-03-19,15:46:51—15:50:11太平洋291.992
    2020-12-01,21:06:20—21:09:40大西洋482.012
    中密度空域2021-03-20,12:03:35—12:06:55北美1223.981
    2021-03-30,13:16:50—13:20:10亚洲1263.985
    高密度空域2021-02-27,22:37:50—22:40:20亚洲2276.976
    2021-04-01,01:44:45—01:47:15北美3137.003
    下载: 导出CSV
  • [1] ICAO. The concept of space-based reception of automatic dependent surveillance-broadcast(ADS-B): A38-WP/132[R]. Montreal: ICAO, 2013.
    [2] ITU-R. Reception of automatic dependent surveillance broadcast via satellite and compatibility studies with incumbent systems in the frequency band 1088.7−1091.3 MHz: ITU-R M. 2413-0[R]. Geneve: ITU-R, 2015.
    [3] DELOVSKI T, WERNER K, RAWLIK T, et al. ADS-B over satellite: The world’s first ADS-B receiver in space[C]//Proceedings of the Small Satellites Systems and Services Symposium. Cologne: DLR, 2014: 1-16.
    [4] BLOMENHOFER H, PAWLITZKI A, ROSENTHAL P, et al. Space-based automatic dependent surveillance broadcast (ADS-B) payload for in-orbit demonstration[C]//Proceedings of the 6th Advanced Satellite Multimedia Systems Conference and 12th Signal Processing for Space Communications Workshop. Piscataway: IEEE Press, 2012: 160-165.
    [5] Flight Safety Foundation. Benefits analysis of space-based ADS-B[R]. Alexandria: Flight Safety Foundation, 2016.
    [6] BAKER K. Space-based ADS-B: Performance, architecture and market[C]//Proceedings of the Integrated Communications, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2019: 1-10.
    [7] 倪久顺, 陈利虎, 余孙全, 等. 星载ADS-B相关研究进展及展望[J]. 中国空间科学技术, 2022, 42(1): 30-37.

    NI J S, CHEN L H, YU S Q, et al. A review for space-based ADS-B[J]. Chinese Space Science and Technology, 2022, 42(1): 30-37(in Chinese).
    [8] DONNER A, KISSLING C, HERMENIER R. Satellite constellation networks for aeronautical communication: Traffic modelling and link load analysis[J]. IET Communications, 2010, 4(13): 1594-1606. doi: 10.1049/iet-com.2009.0260
    [9] GUO J, YANG L, CHEN Q, et al. Design of a low earth orbit satellite constellation network for air traffic surveillance[J]. Journal of Navigation, 2020, 73(6): 1263-1283. doi: 10.1017/S0373463320000260
    [10] 余孙全, 陈利虎, 李松亭, 等. 高灵敏度星载ADS-B信号解调算法[J]. 太赫兹科学与电子信息学报, 2018, 16(5): 133-138.

    YU S Q, CHEN L H, LI S T, et al. High sensitivity detection algorithm for space-based ADS-B[J]. Journal of Terahertz Science and Electronic Information Technology, 2018, 16(5): 133-138(in Chinese).
    [11] REN P, WANG J, ZHANG P. Novel error correction algorithms for ADS-B signals with matched filter based decoding[J]. Physical Communication, 2019, 36: 100788. doi: 10.1016/j.phycom.2019.100788
    [12] REN P, WANG J, XUE W, et al. Novel confidence level labelling methods for ADS-B signals with coherent demodulation scheme[J]. IET Radar, Sonar & Navigation, 2020, 14(2): 268-278.
    [13] BETTRAY A, LITSCHKE O, BAGGEN L. Multi-beam antenna for space-based ADS-B[C]//Proceedings of the IEEE International Symposium on Phased Array Systems and Technology. Piscataway: IEEE Press, 2013: 227-231.
    [14] YU S Q, CHEN L, LI S, et al. Adaptive multi-beamforming for space-based ADS-B[J]. Journal of Navigation, 2019, 72(2): 359-374. doi: 10.1017/S0373463318000735
    [15] BUDROWEIT J, JAKSCH M P, DELOVSKI T. Design of a multi-channel ADS-B receiver for small satellite-based aircraft surveillance[C]//Proceedings of the IEEE Radio and Wireless Symposium. Piscataway: IEEE Press, 2019: 1-4.
    [16] WANG W, WU R, LIANG J. ADS-B signal separation based on blind adaptive beamforming[J]. IEEE Transactions on Vehicular Technology, 2019, 68(7): 6547-6556. doi: 10.1109/TVT.2019.2914233
    [17] LI K D, KANG J, REN H, et al. A reliable separation algorithm of ADS-B signal based on time domain[J]. IEEE Access, 2021, 9: 88019-88026. doi: 10.1109/ACCESS.2021.3082077
    [18] ZHANG Y, LI W, DOU Z. Performance analysis of overlapping space-based ADS-B signal separation based on FastICA[C]//Proceedings of the IEEE Globecom Workshops. Piscataway: IEEE Press, 2019: 19435143.
    [19] YU S Q, CHEN L H, LI S T, et al. Separation of space-based ADS-B signals with single channel for small satellite[C]//Proceedings of the IEEE International Conference on Signal and Image Processing. Piscataway: IEEE Press, 2018: 315-321.
    [20] WANG Y C, ZHANG X J, ZHANG T. A flooding-based routing algorithm for ADS-B packets transmission in leo satellite network[C]//Proceedings of the Integrated Communications, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2019: 1-9.
    [21] GARCIA M A, STAFFORD J, MINNIX J, et al. Aireon space based ADS-B performance model[C]//Proceedings of the Integrated Communication, Navigation and Surveillance Conference. Piscataway: IEEE Press, 2015: 15202005.
    [22] 刘海涛, 李少洋, 秦定本, 等. 共信道干扰环境下星基ADS-B系统监视性能[J]. 航空学报, 2049, 40(12): 220-233.

    LIU H T, LI S Y, QIN D B, et al. Surveillance performance of satellite-based ADS-B system in co-channel interference environment[J]. Acta Aeronautica et Astronautica Sinica, 2049, 40(12): 220-233(in Chinese).
    [23] EUROCONTROL. Standard document for radar surveillance in enroute airspace and major terminal areas[S]. Belgium: European Organisation for the Safety of Air Navigation, 1997.
    [24] RTCA. Minimum operational performance standards for 1090 MHz extended squitter automatic dependent surveillance-broadcast (ADS-B) and traffic information services-broadcast (TIS-B): RTCA DO-260B[S]. Washinton, D. C. : RTCA, 2009.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  454
  • HTML全文浏览量:  32
  • PDF下载量:  52
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-27
  • 录用日期:  2022-03-04
  • 网络出版日期:  2022-04-22
  • 整期出版日期:  2023-11-30

目录

    /

    返回文章
    返回
    常见问答