留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

弱信息交互条件下的无人机集群决策方法

王子泉 李杰 李娟 刘畅

王子泉,李杰,李娟,等. 弱信息交互条件下的无人机集群决策方法[J]. 北京航空航天大学学报,2023,49(12):3489-3499 doi: 10.13700/j.bh.1001-5965.2022.0066
引用本文: 王子泉,李杰,李娟,等. 弱信息交互条件下的无人机集群决策方法[J]. 北京航空航天大学学报,2023,49(12):3489-3499 doi: 10.13700/j.bh.1001-5965.2022.0066
WANG Z Q,LI J,LI J,et al. UAV swarm decision methods under weak information interaction conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3489-3499 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0066
Citation: WANG Z Q,LI J,LI J,et al. UAV swarm decision methods under weak information interaction conditions[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3489-3499 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0066

弱信息交互条件下的无人机集群决策方法

doi: 10.13700/j.bh.1001-5965.2022.0066
基金项目: 国家自然科学基金(62003043,62373053);北京理工大学青年教师学术启动计划(XSQD-202102003)
详细信息
    通讯作者:

    E-mail:juanli@bit.edu.cn

  • 中图分类号: V279

UAV swarm decision methods under weak information interaction conditions

Funds: National Natural Science Foundation of China (62003043,62373053); Beijing Institute of Technology Research Fund Program for Young Scholars (XSQD-202102003)
More Information
  • 摘要:

    随着无人系统与智能技术的发展,作为无人系统的典型应用之一的无人机集群,在民用与军事领域的应用前景越来越广阔,当集群规模较大时,传统的组网通信方式会受到带宽、干扰等限制,极大影响无人机集群的协同作战效能。基于此,提出一种弱信息交互条件下的无人机集群决策模型(WIIUSM),不依赖无人机之间的双向数据交互,仅依靠单向视觉感知的方式实现期望的集群行为。建立了弱信息交互的无人机集群模型,采用改进后的遗传算法(IGA)作为优化方法对决策模型进行优化。以区域搜索任务为例进行仿真测试,将所提方法与基于顶层规划的蛇形方法进行对比,证明了所提方法在搜索效率层面的有效性;测试了不同比例无人机失效条件下搜索效率的下降程度,与蛇形方法进行对比,证明所提方法具有一定的鲁棒性。

     

  • 图 1  无人机各模型关系

    Figure 1.  Model relations of UAV

    图 2  无人机二维空间感知范围示意图

    Figure 2.  Schematic of two-dimensional space perception range of UAV

    图 3  行为原型的组成

    Figure 3.  The composition of behavior prototype

    图 4  IGA流程

    Figure 4.  Flow chart of IGA

    图 5  不同变异参数的优化过程

    Figure 5.  Optimization process for different variation parameters

    图 6  不同无人机数量下2种方法的搜索覆盖率变化

    Figure 6.  Change in search coverage of two methods with different numbers of UAVs

    图 7  IGA决策模型的搜索航迹

    Figure 7.  IGA decision model for search trajectory

    图 8  蛇形方法的搜索航迹

    Figure 8.  Serpentine method of search trajectory

    图 9  2种方法在不同比例无人机失效比例下的区域搜索覆盖率变化

    Figure 9.  Changes in search coverage for two methods with different failure ratios

    图 10  2种方法在不同失效比例下的区域搜索效率下降情况对比

    Figure 10.  Comparison of search efficiency degradation of two methods with different failure ratios

    表  1  搜索任务IGA优化参数设置

    Table  1.   IGA optimization parameter settings of search task

    参数数值
    种群规模$p_{\rm{pop}}$10
    迭代次数20
    最优保持比例0.5
    适应度计算次数$n_{\rm{num}}$5
    行为原型数量1
    交叉概率0.1
    变异概率$m_{\rm{r}}$0.4,0.9
    变异比率$ r $0.05,0.15,0.25
    下载: 导出CSV

    表  2  不同变异参数下种群适应度变化

    Table  2.   Changes in population fitness with different variation parameters

    r初代平均适应数值末代平均适应数值增长率/%
    mr=0.4mr=0.9mr=0.4mr=0.9mr=0.4mr=0.9
    0.050.6960.6490.7380.7465.9314.9
    0.150.6560.6530.7080.7387.9713.1
    0.250.6360.6290.7210.69313.310.3
    下载: 导出CSV

    表  3  搜索任务最优个体的决策模型参数

    Table  3.   Decision model parameters for optimal individual of search task

    $ {C}_{1} $$ {C}_{2} $$ {W}_{1} $$ {W}_{2} $$ {W}_{3} $$ {W}_{4} $
    0.070.070.870.220.780.56
    下载: 导出CSV

    表  4  区域搜索任务场景设置

    Table  4.   Scenario setting of regional search task

    参数数值
    无人机数量$ n $1,3,5,10,20
    感知视场角$ \psi $/(°)120
    感知视场半径$ {r}_{1},{r}_{2} $/km0.1,0.5
    区域范围$ {E}_{x}\times {E}_{y} $/(km×km)4×4
    无人机初始位置${\boldsymbol{p}}$/km$ x,y\in \left[-1.8,-1.4\right] $
    无人机初始速度${\boldsymbol{v}}$/(k·m−1)$ {v}_{x},{v}_{y}\in \left[\mathrm{0,0.01}\right] $
    仿真步长$ {t}_{\max} $3000
    下载: 导出CSV
  • [1] MICHAEL F. Unmanned combat air vehicles: Opportunities for the guided weapons industry?[R]. Londn: Royal United Services Institute for Defence and Security Studies, 2008.
    [2] 牛轶峰, 沈林成, 戴斌, 等. 无人作战系统发展[J]. 国防科技, 2009, 30(5): 1-11. doi: 10.3969/j.issn.1671-4547.2009.05.001

    NIU Y F, SHEN L C, DAI B, et al. A survey of unmanned combat system development[J]. National Defense Science & Technology, 2009, 30(5): 1-11(in Chinese). doi: 10.3969/j.issn.1671-4547.2009.05.001
    [3] 杜梓冰, 张立丰, 陈敬志, 等. 有人/无人机协同作战演示验证试飞关键技术[J]. 航空兵器, 2019, 26(4): 75-81. doi: 10.12132/ISSN.1673-5048.2018.0089

    DU Z B, ZHANG L F, CHEN J Z, et al. Critical technologies of demonstration flight test of cooperative operation for manned/unmanned aerial vehicles[J]. Aero Weaponry, 2019, 26(4): 75-81(in Chinese). doi: 10.12132/ISSN.1673-5048.2018.0089
    [4] BEN-ASHER Y, FELDMAN S, GURFIL P, et al. Distributed decision and control for cooperative UAVs using Ad-Hoc communication[J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 511-516. doi: 10.1109/TCST.2007.906314
    [5] KIM S W, SEO S W. Cooperative unmanned autonomous vehicle control for spatially secure group communications[J]. IEEE Journal on Selected Areas in Communications, 2012, 30(5): 870-882. doi: 10.1109/JSAC.2012.120604
    [6] REZENDE C, BOUKERCHE A, ALMULLA M, et al. The selective use of redundancy for video streaming over vehicular Ad Hoc networks[J]. Computer Networks, 2015, 81: 43-62. doi: 10.1016/j.comnet.2014.12.010
    [7] 姜胜园. 无线通信信道建模与物理层安全传输应用研究[D]. 杭州: 浙江工业大学, 2018.

    JIANG S Y. Research on wireless communication channel modeling and physical layer security transmission application[D]. Hangzhou: Zhejiang University of Technology, 2018(in Chinese).
    [8] 梁晓龙, 孙强, 尹忠海, 等. 大规模无人系统集群智能控制方法综述[J]. 计算机应用研究, 2015, 32(1): 11-16. doi: 10.3969/j.issn.1001-3695.2015.01.003

    LIANG X L, SUN Q, YIN Z H, et al. Review on large-scale unmanned system swarm intelligence control method[J]. Application Research of Computers, 2015, 32(1): 11-16(in Chinese). doi: 10.3969/j.issn.1001-3695.2015.01.003
    [9] GAZI V, PASSINO K M. Stability analysis of swarms[J]. IEEE Transactions on Automatic Control, 2003, 48(4): 692-697. doi: 10.1109/TAC.2003.809765
    [10] 曹丹丹. 无线紫外光协作无人机编队通信拓扑优化方法研究[D]. 西安: 西安理工大学, 2021.

    CAO D D. Research on wireless ultraviolet collaborative UAV formation communication topology optimization method[D]. Xi’an: Xi’an University of Technology, 2021(in Chinese).
    [11] 赵诗雪. 无线紫外光协作无人机最优持久编队算法研究[D]. 西安: 西安理工大学, 2020.

    ZHAO S X. Research on optimal persistent formation algotithm of wireless ultraviolet collaboration UAV[D]. Xi’an: Xi’an University of Technology, 2020(in Chinese).
    [12] HOLLAND J H. Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence[M]. Cambridge: MIT Press, 1992.
    [13] KHOEI T T, GHRIBI E, RANGANATHAN P, et al. A performance comparison of encryption/decryption algorithms for UAV swarm communications[J]. Academic Press, 2021, 1: 1-5.
    [14] XIAO W J, LI M, ALZAHRANI B, et al. A blockchain-based secure crowd monitoring system using UAV swarm[J]. IEEE Network, 2021, 35(1): 108-115. doi: 10.1109/MNET.011.2000210
    [15] GHIGLINO P, LAPPAS V. Quaternion error based optimal attitude control applied to pinpoint landing: AIAA 2015-1998[R]. Reston: AIAA, 2015.
  • 加载中
图(10) / 表(4)
计量
  • 文章访问数:  806
  • HTML全文浏览量:  44
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-03
  • 录用日期:  2022-05-21
  • 网络出版日期:  2023-09-14
  • 整期出版日期:  2023-12-31

目录

    /

    返回文章
    返回
    常见问答