留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多特征融合与RF的球磨机滚动轴承故障诊断

王进花 周德义 曹洁 李亚洁

王进花,周德义,曹洁,等. 基于多特征融合与RF的球磨机滚动轴承故障诊断[J]. 北京航空航天大学学报,2023,49(12):3253-3264 doi: 10.13700/j.bh.1001-5965.2022.0069
引用本文: 王进花,周德义,曹洁,等. 基于多特征融合与RF的球磨机滚动轴承故障诊断[J]. 北京航空航天大学学报,2023,49(12):3253-3264 doi: 10.13700/j.bh.1001-5965.2022.0069
WANG J H,ZHOU D Y,CAO J,et al. Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3253-3264 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0069
Citation: WANG J H,ZHOU D Y,CAO J,et al. Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3253-3264 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0069

基于多特征融合与RF的球磨机滚动轴承故障诊断

doi: 10.13700/j.bh.1001-5965.2022.0069
基金项目: 国家重点研发计划(2020YFB1713600);国家自然科学基金(62063020);甘肃省自然科学基金(20JR5RA463)
详细信息
    通讯作者:

    E-mail:wjh0615@lut.edu.cn

  • 中图分类号: TB277;TH133.33

Fault diagnosis of ball mill rolling bearing based on multi-feature fusion and RF

Funds: National Key R & D Program of China (2020YFB1713600); National Natural Science Foundation of China (62063020); Natural Science Foundation of Gansu Province (20JR5RA463)
More Information
  • 摘要:

    由于冶金工业工况复杂,很难从单一信号中获取高质量的故障特征,诊断效果不佳。针对直接使用电流和振动信号进行融合,不能体现2类信号在不同频段上的优势和彼此之间的互补信息,而影响诊断性能的问题,提出一种基于振动和电流信号的多特征互补融合故障诊断方法。将振动信号和电流信号的高频系数特征通过最大绝对值规则融合,形成体现高频段特征的互补特征;将振动信号和电流信号的低频系数特征通过稀疏表示(SR )融合,形成体现低频段特征的互补特征。通过定义由多特征组成的特征矩阵融合全频段特征,增强全局特征表征能力。采用递归特征消除法消除融合后的冗余特征,提高分类精度,结合随机森林( RF )对轴承故障状态进行分类。实验结果表明:所提方法相比基于振动信号和基于电流信号的诊断结果更加准确。

     

  • 图 1  DWT-SR融合框架

    Figure 1.  DWT-SR fusion framework

    图 2  基于RF的球磨机滚动轴承故障诊断流程

    Figure 2.  Flowchart of fault diagnosis of ball mill rolling bearing based on RF

    图 3  球磨机实物图

    Figure 3.  Physical drawing of ball mill

    图 4  球磨机结构

    Figure 4.  Ball mill structure

    图 5  信号的时域图和频域图

    Figure 5.  Time domain and frequency domain diagrams of signals

    图 6  实测数据集上的故障分类混淆矩阵

    Figure 6.  Failure classification confusion matrix on real datasets

    图 7  轴承状态图

    Figure 7.  Bearing status diagram

    图 8  公共数据集上的故障分类混淆矩阵

    Figure 8.  Failure classification confusion matrix on public datasets

    表  1  实测数据集上不同方法分类准确率对比

    Table  1.   Comparison of classification accuracy of various methods on real datasets

    方法信号类型平均准确率/%平均F1分数/%
    KNN振动66.1866.18
    电流56.3759.37
    DT振动89.7189.65
    电流83.0883.08
    RF振动93.3894.38
    电流89.4689.44
    本文方法振动 +电流99.0299.02
    下载: 导出CSV

    表  2  实验数据的轴承代号

    Table  2.   Bearing code used for experimental data

    故障类别轴承代号标签
    正常(HBD)K001, K002, K003, K004, K005, K0060
    外圈故障(OR)KA04, KA15, KA16, KA22, KA301
    内圈故障(IR)KI04, KI14, KI16, KI17, KI18,KI212
    下载: 导出CSV

    表  3  公共数据集上不同方法分类准确率对比

    Table  3.   Comparison of classification accuracy of various methods on public datasets

    方法 信号类型平均准确率/%平均F1分数/%
    CS1+CNN[29] 电流90.93
    CS2+CNN[29] 电流86.53
    CS1+SVM 电流68.8768.87
    CS1+KNN 电流49.7549.75
    CS1+DT 电流88.4888.48
    CS1+RF 电流93.3892.98
    BT[30] 振动83.3
    SVM-PSO[30] 振动75.8
    KNN[30] 振动62.5
    RF[30] 振动98.3
    SVM 振动96.3295.31
    KNN 振动96.3296.32
    DT 振动95.3495.34
    RF 振动98.7798.77
    本文方法 振动 +电流99.7199.71
    下载: 导出CSV
  • [1] 蔡改贫, 刘鑫, 罗小燕, 等. 基于多尺度模糊熵和改进极限学习机的球磨机负荷状态识别[J]. 吉林大学学报(工学版), 2020, 50(6): 2055-2067. doi: 10.13229/j.cnki.jdxbgxb20190716

    CAI G P, LIU X, LUO X Y, et al. Load state recognition of ball mill based on multi-scale fuzzy entropy and improved extreme learning machine[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(6): 2055-2067(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20190716
    [2] JIANG G, ZHAO J, JIA C, et al. Intelligent fault diagnosis of gearbox based on vibration and current signals: A multimodal deep learning approach[C]//Proceedings of the Prognostics and System Health Management Conference. Piscataway: IEEE Press, 2019: 1-6.
    [3] YAN R, GAO R X, CHEN X. Wavelets for fault diagnosis of rotary machines: A review with applications[J]. Signal Processing, 2014, 96: 1-15. doi: 10.1016/j.sigpro.2013.04.015
    [4] LEI Y, LIN J, HE Z, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2013, 35(1-2): 108-126. doi: 10.1016/j.ymssp.2012.09.015
    [5] JIANG G Q, PING X, XIAO W, et al. Intelligent fault diagnosis of rotary machinery based on unsupervised multiscale representation learning[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6): 1-11.
    [6] SOUALHI A, MEDJAHER K, ZERHOUNI N. Bearing health monitoring based on Hilbert-Huang transform, support vector machine and regression[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(1): 52-62. doi: 10.1109/TIM.2014.2330494
    [7] 胡显能, 蔡改贫, 罗小燕, 等. 基于 CEEMDAN 和多尺度排列熵的球磨机负荷识别方法[J]. 噪声与振动控制, 2018, 38(3): 146-151.

    HU X N, CAI G P, LUO X Y, et al. Load identification method of ball mill based on CEEMDAN and multi-scale permutation entropy[J]. Noise and Vibration Control, 2018, 38(3): 146-151(in Chinese).
    [8] CHEN Z, LI W. Multisensor feature fusion for bearing fault diagnosis using sparse autoencoder and deep belief network[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66(7): 1693-1702. doi: 10.1109/TIM.2017.2669947
    [9] LU D, GONG X, QIAO W. Current-based diagnosis for gear tooth breaks in wind turbine gearboxes[C]//Proceedings of the IEEE Energy Conversion Congress and Exposition. Piscataway: IEEE Press, 2012: 3780-3786.
    [10] SUN L L, ZHANG K K, LU X D. Stator inter-turn fault diagnosis of induction motor based on wavelet packet decomposition and random forest[C]//Proceedings of the Renewable Power Generation Conference. London: IET, 2019: 1-6.
    [11] WIDODO A, YANG B S, GU D S, et al. Intelligent fault diagnosis system of induction motor based on transient current signal[J]. Mechatronics, 2009, 19(5): 680-689. doi: 10.1016/j.mechatronics.2009.02.002
    [12] WANG J, FU P, ZHANG L, et al. Multilevel information fusion for induction motor fault diagnosis[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24(5): 2139-2150. doi: 10.1109/TMECH.2019.2928967
    [13] XIA M, LI T, XU L, et al. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks[J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(1): 101-110.
    [14] HOU L, BERGMANN N W. Novel industrial wireless sensor networks for machine condition monitoring and fault diagnosis[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(10): 2787-2798. doi: 10.1109/TIM.2012.2200817
    [15] LI C, SANCHEZ R V, ZURITA G, et al. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals[J]. Mechanical Systems and Signal Processing, 2016, 76-77: 283-293.
    [16] MA M, SUN C, CHEN X. Deep coupling autoencoder for fault diagnosis with multimodal sensory data[J]. IEEE Transactions on Industrial Informatics, 2018, 14(3): 1137-1145. doi: 10.1109/TII.2018.2793246
    [17] JING L Y, WANG T Y, ZHAO M, et al. An adaptive multi-sensor data fusion method based on deep convolutional neural networks for fault diagnosis of planetary gearbox[J]. Sensors (Switzerland), 2017, 17(2): 414.
    [18] WU J D, CHEN J C. Continuous wavelet transform technique for fault signal diagnosis of internal combustion engines[J]. NDT & E International, 2006, 39(4): 304-311.
    [19] LI Z, FENG Z, CHU F. A load identification method based on wavelet multi-resolution analysis[J]. Journal of Sound and Vibration, 2014, 333(2): 381-391. doi: 10.1016/j.jsv.2013.09.026
    [20] ERIŞTI H, UÇAR A, DEMIR Y. Wavelet-based feature extraction and selection for classification of power system disturbances using support vector machines[J]. Electric Power Systems Research, 2010, 80(7): 743-752. doi: 10.1016/j.jpgr.2009.09.021
    [21] BLODT M, GRANJON P, RAISON B, et al. Models for bearing damage detection in induction motors using stator current monitoring[J]. IEEE Transactions on Industrial Electronics, 2008, 55(4): 1813-1822. doi: 10.1109/TIE.2008.917108
    [22] MALLAT S G, ZHANG Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing, 1993, 41(12): 3397-3415. doi: 10.1109/78.258082
    [23] TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. doi: 10.1109/TIT.2007.909108
    [24] TROPP J A, GILBERT A C, STRAUSS M J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit[J]. Signal Processing, 2006, 86(3): 572-588. doi: 10.1016/j.sigpro.2005.05.030
    [25] YANG B, LI S. Pixel-level image fusion with simultaneous orthogonal matching pursuit[J]. Information Fusion, 2012, 13(1): 10-19. doi: 10.1016/j.inffus.2010.04.001
    [26] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32. doi: 10.1023/A:1010933404324
    [27] WAN L, GONG K, ZHANG G, et al. An efficient rolling bearing fault diagnosis method based on spark and improved random forest algorithm[J]. IEEE Access, 2021, 9: 37866-37882. doi: 10.1109/ACCESS.2021.3063929
    [28] TOMA R N, KIM J M. Bearing fault classification of induction motors using discrete wavelet transform and ensemble machine learning algorithms[J]. Applied Sciences, 2020, 10(15): 5251. doi: 10.3390/app10155251
    [29] HOANG D T, KANG H J. A motor current signal-based bearing fault diagnosis using deep learning and information fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 3325-3333.
    [30] LESSMEIER C, KIMOTHO J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: A benchmark data set for data-driven classification[C]//Proceedings of the European Conference of the Prognostics and Health Management Society.[S.l.]: PHM Society, 2016: 1-17.
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  79
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 录用日期:  2022-06-25
  • 网络出版日期:  2022-09-16
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答