留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

14 nm pFinFET器件抗单粒子辐射的加固方法

史柱 王斌 杨博 赵雁鹏 惠思源 刘文平

史柱,王斌,杨博,等. 14 nm pFinFET器件抗单粒子辐射的加固方法[J]. 北京航空航天大学学报,2023,49(12):3335-3342 doi: 10.13700/j.bh.1001-5965.2022.0071
引用本文: 史柱,王斌,杨博,等. 14 nm pFinFET器件抗单粒子辐射的加固方法[J]. 北京航空航天大学学报,2023,49(12):3335-3342 doi: 10.13700/j.bh.1001-5965.2022.0071
SHI Z,WANG B,YANG B,et al. Single-event radiation hardening method for 14 nm pFinFET device[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3335-3342 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0071
Citation: SHI Z,WANG B,YANG B,et al. Single-event radiation hardening method for 14 nm pFinFET device[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3335-3342 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0071

14 nm pFinFET器件抗单粒子辐射的加固方法

doi: 10.13700/j.bh.1001-5965.2022.0071
基金项目: 国家科技重大专项(2020002-047)
详细信息
    通讯作者:

    E-mail:liu-wp@163.com

  • 中图分类号: V216.5+1

Single-event radiation hardening method for 14 nm pFinFET device

Funds: National Science and Technology Major Project (2020002-047)
More Information
  • 摘要:

    为探究先进互补金属氧化物半导体(CMOS)工艺在空间应用中的可靠性问题,研究14 nm工艺下P型沟道鳍式场效应晶体管(pFinFET)器件中的抗单粒子瞬态(SET)加固策略。通过在器件中插入平行于鳍方向的重掺杂N型沟槽(Ntie)和P型沟槽(Ptie)来减缓SET的影响。三维TCAD仿真结果表明:加固之后器件的抗SET特性和沟槽本身的偏置条件相关。当重掺杂沟槽处于零偏状态时,抗辐射加固的性能最好,SET脉冲宽度降低程度可达40%左右;然而,当处于反偏状态时,由于特殊的电荷收集过程的存在,使得SET脉冲幅度反而会明显增大,脉冲宽度减小程度并不明显。此外,还研究沟槽面积、间距及掺杂浓度对pFinFET中的SET脉冲宽度的影响,得到提高抗SET效果的加固方法。

     

  • 图 1  FinFET器件中引入的电场[6]

    Figure 1.  The introduced electric field in FinFET device[6]

    图 2  插入了Ntie和Ptie的pFinFET器件结构

    Figure 2.  Structure of pFinFET device with inserted Ntie and Ptie

    图 3  混合仿真反相器

    Figure 3.  Mixed-mode simulation inverter

    图 4  不同器件结构和偏置条件下的pFinFET单粒子脉冲电压

    Figure 4.  SET pulses of pFinFET at different structures and bias conditions

    图 5  辐射之后的pFinFET器件各端口电流及其主要成分

    Figure 5.  Currents and their main components at each port of pFinFET device after radiation

    图 6  Ntie和Ptie处于反偏状态下的加固pFinFET器件辐照前后的电流

    Figure 6.  Currents in hardened pFinFET device before and after radiationwith Ntie and Ptie in reverse bias state

    图 7  粒子入射5 ps后器件内部电势分布

    Figure 7.  Potential distribution inside device after 5 ps of particle incidence

    图 8  SET测试电路基本结构

    Figure 8.  Basic structure of SET test circuit

    表  1  不同器件产生的SET脉冲宽度和幅值

    Table  1.   SET pulses width and amplitude generated by different devices

    器件脉宽/ps幅度/V
    VLET=1,未加固12.00.95
    VLET=2,未加固14.70.98
    VLET=3,未加固16.00.99
    VLET=1,反偏10.51.33
    VLET=2,反偏12.71.48
    VLET=3,反偏13.61.47
    VLET=1,零偏7.20.77
    VLET=2,零偏8.80.78
    VLET=3,零偏9.80.78
    下载: 导出CSV

    表  2  沟槽的参数变化对pFinFET中脉冲宽度的影响

    Table  2.   Effect of parameter variation of trenches on pulse width in pFinFET

    参数脉宽/ps脉宽变化
    本文仿真条件(见2.1节)7.2
    掺杂浓度提高10倍7减小
    掺杂浓度提高100倍6.9减小
    表面积减半7减小
    表面积加倍7.3增大
    与鳍的距离减半6.5减小
    与鳍的距离加倍7.9增大
    下载: 导出CSV
  • [1] SEIFERT N, JAHINUZZAMAN S, VELAMALA J, et al. Soft error rate improvements in 14-nm technology featuring second-generation 3D tri-gate transistors[J]. IEEE Transactions on Nuclear Science, 2015, 62(6): 2570-2577. doi: 10.1109/TNS.2015.2495130
    [2] YI B, LEE B J, OH J H, et al. Physics-based compact model of parasitic bipolar transistor for single-event transients in FinFETs[J]. IEEE Transactions on Nuclear Science, 2018, 65(3): 866-870. doi: 10.1109/TNS.2018.2796622
    [3] NSENGIYUMVA P, MASSENGILL L W, KAUPPILA J S, et al. Angular effects on single-event mechanisms in bulk FinFET technologies[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 223-230. doi: 10.1109/TNS.2017.2775234
    [4] KUMAR S, CHO M, EVERSON L, et al. Analysis of neutron-induced multibit-upset clusters in a 14-nm flip-flop array[J]. IEEE Transactions on Nuclear Science, 2019, 66(6): 918-925. doi: 10.1109/TNS.2019.2911540
    [5] JIANG H, ZHANG H, CHATTERJEE I, et al. Power-aware SE analysis of different FF designs at the 14-16-nm bulk FinFET CMOS technology node[J]. IEEE Transactions on Nuclear Science, 2018, 65(8): 1866-1871. doi: 10.1109/TNS.2018.2831002
    [6] CALOMARDE A, AMAT E, RUBIO A, et al. Active charge collection strategy for radiation environment at device level[C]//2016 16th European Conference on Radiation and Its Effects on Components and Systems. Piscataway: IEEE Press, 2017: 1-4.
    [7] SANDEEPAN D G. Trends in single event pulse widths and pulse shapes in deep submicron CMOS[D]. Nashville: Vanderbilt University, 2007: 45-50.
    [8] CALOMARDE A, RUBIO A, MOLL F, et al. Active radiation-hardening strategy in bulk FinFETs[J]. IEEE Access, 2020, 8: 201441-201449. doi: 10.1109/ACCESS.2020.3035974
    [9] AMUSAN O A, MASSENGILL L W, BHUVA B L, et al. Design techniques to reduce SET pulse widths in deep-submicron combinational logic[J]. IEEE Transactions on Nuclear Science, 2007, 54(6): 2060-2064. doi: 10.1109/TNS.2007.907754
    [10] JAGANNATHAN S, GADLAGE M J, BHUVA B L, et al. Independent measurement of SET pulse widths from N-hits and P-hits in 65-nm CMOS[J]. IEEE Transactions on Nuclear Science, 2010, 57(6): 3386-3391.
    [11] ZHAO W, HE C H, CHEN W, et al. Single-event double transients in inverter chains designed with different transistor widths[J]. IEEE Transactions on Nuclear Science, 2019, 66(7): 1491-1499. doi: 10.1109/TNS.2019.2895610
    [12] 史柱, 赵雁鹏, 高利军, 等. 抗单粒子瞬态的辐射加固压控延时单元[J]. 西安交通大学学报, 2021, 55(9): 105-112.

    SHI Z, ZHAO Y P, GAO L J, et al. A radiation-hardened voltage-controlled delay cell against single-event-transient[J]. Journal of Xi’an Jiaotong University, 2021, 55(9): 105-112 (in Chinese).
    [13] 王琳, 宋李梅, 王立新, 等. 一种提升抗单粒子能力的新型超结结构[J]. 微电子学与计算机, 2019, 36(9): 84-88. doi: 10.19304/j.cnki.issn1000-7180.2019.09.016

    WANG L, SONG L M, WANG L X, et al. A proposed structure to improve SEE performance for 700 V Super-Junction VDMOS[J]. Microelectronics & Computer, 2019, 36(9): 84-88(in Chinese). doi: 10.19304/j.cnki.issn1000-7180.2019.09.016
    [14] 董刚, 封国强, 陈睿, 等. CMOS器件单粒子效应电荷收集机理[J]. 北京航空航天大学学报, 2014, 40(6): 839-843. doi: 10.13700/j.bh.1001-5965.2013.0435

    DONG G, FENG G Q, CHEN R, et al. Single event charge collection in CMOS device[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 839-843(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.0435
    [15] EL-MAMOUNI F, ZHANG E X, PATE N D, et al. Laser- and heavy ion-induced charge collection in bulk FinFETs[J]. IEEE Transactions on Nuclear Science, 2011, 58(6): 2563-2569. doi: 10.1109/TNS.2011.2171994
    [16] MUNTEANU D, AUTRAN J L. Simulation analysis of bipolar amplification in independent-gate FinFET and multi-channel NWFET submitted to heavy-ion irradiation[J]. IEEE Transactions on Nuclear Science, 2012, 59(6): 3249-3257. doi: 10.1109/TNS.2012.2221740
    [17] FERLET-CAVROIS V, PAILLET P, MCMORROW D, et al. Direct measurement of transient pulses induced by laser and heavy ion irradiation in deca-nanometer devices[J]. IEEE Transactions on Nuclear Science, 2005, 52(6): 2104-2113. doi: 10.1109/TNS.2005.860682
    [18] 鄂长江, 李少甫, 齐艺轲. 单粒子多瞬态诱导的组合电路软错误敏感性评估[J]. 微电子学与计算机, 2019, 36(11): 16-19. doi: 10.19304/j.cnki.issn1000-7180.2019.11.004

    E C J, LI S F, QI Y K. Soft error sensitivity estimation of single event multi-transient induced combination circuits[J]. Microelectronics & Computer, 2019, 36(11): 16-19(in Chinese). doi: 10.19304/j.cnki.issn1000-7180.2019.11.004
    [19] MAHARREY J A, KAUPPILA J S, HARRINGTON R C, et al. Impact of single-event transient duration and electrical delay at reduced supply voltages on SET mitigation techniques[J]. IEEE Transactions on Nuclear Science, 2018, 65(1): 362-368. doi: 10.1109/TNS.2017.2779818
    [20] ZHANG H F, JIANG H, ASSIS T R, et al. Single-event upset responses of dual- and triple-well designs at advanced planar and FinFET technologies[C]//2016 16th European Conference on Radiation and Its Effects on Components and Systems. Piscataway: IEEE Press, 2017: 1-6.
    [21] NSENGIYUMVA P, MASSENGILL L W, ALLES M L, et al. Analysis of bulk FinFET structural effects on single-event cross sections[J]. IEEE Transactions on Nuclear Science, 2017, 64(1): 441-448. doi: 10.1109/TNS.2016.2620940
    [22] DING L L, CHEN W, WANG T, et al. Modeling the dependence of single-event transients on strike location for circuit-level simulation[J]. IEEE Transactions on Nuclear Science, 2019, 66(6): 866-874. doi: 10.1109/TNS.2019.2904716
    [23] AMUSAN O A, MASSENGILL L W, BAZE M P, et al. Mitigation techniques for single-event-induced charge sharing in a 90-nm bulk CMOS process[J]. IEEE Transactions on Device and Materials Reliability, 2009, 9(2): 311-317. doi: 10.1109/TDMR.2009.2019963
    [24] YU J T, CHEN S M, CHEN J J, et al. Simulation analysis of heavy-ion-induced single-event response for nanoscale bulk-Si FinFETs and conventional planar devices[J]. Science China Technological Sciences, 2017, 60(3): 459-466. doi: 10.1007/s11431-016-0241-4
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  20
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 录用日期:  2022-04-16
  • 网络出版日期:  2022-04-28
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答