留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

TPDF-ASOM复合湍流燃烧模型及其检验

王方 杨子峥 韩宇轩 金捷

王方,杨子峥,韩宇轩,等. TPDF-ASOM复合湍流燃烧模型及其检验[J]. 北京航空航天大学学报,2023,49(12):3265-3282 doi: 10.13700/j.bh.1001-5965.2022.0073
引用本文: 王方,杨子峥,韩宇轩,等. TPDF-ASOM复合湍流燃烧模型及其检验[J]. 北京航空航天大学学报,2023,49(12):3265-3282 doi: 10.13700/j.bh.1001-5965.2022.0073
WANG F,YANG Z Z,HAN Y X,et al. A composite TPDF-ASOM turbulence combustion model and its validation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3265-3282 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0073
Citation: WANG F,YANG Z Z,HAN Y X,et al. A composite TPDF-ASOM turbulence combustion model and its validation[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3265-3282 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0073

TPDF-ASOM复合湍流燃烧模型及其检验

doi: 10.13700/j.bh.1001-5965.2022.0073
基金项目: 国家科技重大专项(2017-Ⅰ-0004-0005);国家自然科学基金(91741125)
详细信息
    通讯作者:

    E-mail:fwang@buaa.edu.cn

  • 中图分类号: V231.2

A composite TPDF-ASOM turbulence combustion model and its validation

Funds: National Science and Technology Major Project (2017-Ⅰ-0004-0005); National Natural Science Foundation of China (91741125)
More Information
  • 摘要:

    先进航空发动机燃烧室设计要求对湍流火焰精确控制,现有模拟方法需提高精度和效率。输运概率密度函数(TPDF)湍流燃烧模型精度高,代数二阶矩(ASOM)湍流燃烧模型计算成本低,类比离散涡模拟思想,基于Da数将湍流燃烧场区分“高精度”和“低成本”2个区域,在输运方程框架下采用随机场TPDF(高精度)和ASOM(低成本)方法重构TPDF-ASOM复合湍流燃烧模型,以提高模拟的整体精度和效率。在大涡模拟(LES)-TPDF程序平台创建ASOM并进一步实现TPDF-ASOM复合湍流燃烧模型,用Flame D实验数据检验所建模型和方法。结果表明:所建模型的预测结果与实验值接近,而且能够兼顾精度和计算效率。

     

  • 图 1  网格划分示意图

    Figure 1.  Diagram of mesh division

    图 2  ASOM JL1机理瞬态结构剖面图

    Figure 2.  Transient structural cross-section by single-step mechanism of ASOM

    图 3  ASOM JL1机理各轴向位置温度时均/均方根对比

    Figure 3.  Comparison of time-average/RMS temperature graphs at each axial position by single-step mechanism of ASOM

    图 4  ASOM JL1机理各轴向位置甲烷质量分数时均/均方根对比

    Figure 4.  Comparison of time-average/RMS methane mass fraction at each axial position by single-step mechanism of ASOM

    图 5  ASOM JL1机理各轴向位置混合物分数时均/均方根对比

    Figure 5.  Comparison of time-average/RMS mixture fraction at each axial position by single-step mechanism of ASOM

    图 6  ASOM JL4与JL1机理瞬时温度结构剖面

    Figure 6.  Cross-sectional view of the transient temperature structure by four -step and single -step mechanism of ASOM

    图 7  ASOM JL1与JL4机理温度时均/均方根结果对比

    Figure 7.  Comparison of time-average/RMS temperature by single-step and four-step mechanism of ASOM

    图 8  ASOM JL1与JL4机理甲烷质量分数时均/均方根结果对比

    Figure 8.  Comparison of time-average/RMS methane mass fraction by single-step and four-step mechanism of ASOM

    图 9  JL1机理ASOM与LFR模型温度与甲烷质量分数轴向分布

    Figure 9.  Axial distribution of mean and RMS temperature and methane mass fraction between single-step mechanism ASOM and LFR model

    图 10  JL1机理代数ASOM与LFR模型温度径向分布对比

    Figure 10.  Comparison of temperature radial distribution between single-step mechanism ASOM and LFR model

    图 11  JL4机理ASOM与LFR模型温度与甲烷质量分数轴向分布

    Figure 11.  Axial distribution of temperature and methane mass fraction between four-step mechanism ASOM and LFR model

    图 12  Da数为0.09和0.03时判据空间和中心截面分布

    Figure 12.  Space and central cross-section distribution diagram for Da number of 0.09 and 0.03 criterion

    图 13  JL1机理TPDF-ASOM湍流燃烧模型瞬态温度结构剖面

    Figure 13.  Transient structural temperature figures by single-step mechanism of TPDF-ASOM turbulent combustion model

    图 14  JL1机理TPDF-ASOM湍流燃烧模拟Coup03和Coup09算例温度的时均/均方根径向分布

    Figure 14.  Radial distribution of time-average/RMS temperature value of Coup03 and Coup09 simulated by single-step mechanism of TPDF-ASOM turbulent combustion model

    图 15  JL1机理TPDF-ASOM湍流燃烧模拟Coup03和Coup09算例混合物分数的时均值径向分布

    Figure 15.  Time-averaged radial distribution of mixture fraction of Coup03 and Coup09 simulated by single-step mechanism of TPDF-ASOM turbulent combustion model

    图 16  JL1机理TPDF-ASOM湍流燃烧模拟Coup03和Coup09算例轴向速度的时均值径向分布

    Figure 16.  Time-averaged radial distribution of axial velocity of Coup03 and Coup09 simulated by single-step mechanism of TPDF-ASOM turbulent combustion model

    图 17  JL1机理三种燃烧模型温度时均/均方根的径向分布

    Figure 17.  Radial distribution of temperature time-average/RMS values of three combustion models by single-step mechanism

    图 18  JL1机理3种燃烧模型温度与甲烷质量分数时均/均方根的轴向分布

    Figure 18.  Axial distributions of temperature and methane mass fraction time-average/RMS values for three combustion models by single-step mechanism

    图 19  JL4机理TPDF-ASOM湍流燃烧模拟瞬态结构温度剖面

    Figure 19.  Transient structural temperature figures of JL4 mechanism simultaneous contour by TPDF-ASOM

    图 20  JL4机理TPDF-ASOM湍流燃烧模拟Coup09算例温度时均/均方根的径向分布

    Figure 20.  Radial distribution of time-average/RMS temperature of JL4 Coup09 TPDF-ASOM simulation

    图 21  JL4机理TPDF-ASOM湍流燃烧模拟Coup03算例温度时均/均方根的径向分布

    Figure 21.  Radial distribution of time-average/RMS temperature of JL4 Coup03 TPDF-ASOM simulation

    图 22  JL4机理TPDF模型温度时均/均方根的径向分布

    Figure 22.  Radial distribution of time-average/RMS temperature of JL4 TPDF simulation

    图 23  JL4机理TPDF模型瞬时温度的中心剖面

    Figure 23.  Transient structural temperature of TPDF model of JL4 mechanism at center section

    图 24  3种燃烧模型计算效率对比(模拟时间为3 ms)

    Figure 24.  Comparison of calculation efficiency of three combustion models (simulation time is 3 ms)

    表  1  Flame D火焰边界条件设置

    Table  1.   Flame D boundary condition settings

    边界边界条件
    燃料进口温度T=293 K,速度U=49.6 m/s
    体积分数:甲烷25%,空气75%
    值班火焰温度T=1880 K,速度U=11.4 m/s
    已燃气
    伴流进口温度T=293 K,速度U=0.9 m/s
    空气
    出口边界压力出口边界
    其他边界绝热固壁无滑移边界
    下载: 导出CSV

    表  2  甲烷JL4机理反应动力学参数

    Table  2.   Reaction kinetic parameters of CH4 by Xfour-step mechanism

    计算式反应级数$ A $/(cm3·mol−1·s−1)$ \beta $$E$/J·mol−1)
    式 (16)$\left[\mathrm{CH}_{4}\right]^{0.5}\left[\mathrm{O}_{2}\right]^{1.25}$$ 7.82 \times 10^{18} $0126 000
    式 (17)$ \left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right] $$ 0.30 \times 10^{11} $0126 000
    式 (18)$\left[\mathrm{H}_{2}\right]^{0.5}\left[\mathrm{O}_{2}\right]^{2.25 }\left[\mathrm{H}_{3} \mathrm{O}\right]^{-1}$$4.45 \times 10^{18}$−1167 000
    式 (19)$ [\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right] $$ 2.75 \times 10^{12} $0 83 700
    下载: 导出CSV
  • [1] POPE S B. Small scales, many species and the manifold challenges of turbulent combustion[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1-31. doi: 10.1016/j.proci.2012.09.009
    [2] HOCHGREB S. Mind the gap: Turbulent combustion model validation and future needs[J]. Proceedings of the Combustion Institute, 2019, 37(2): 2091-2107. doi: 10.1016/j.proci.2018.05.003
    [3] PETERS N. Turbulent combustion[M]. Cambridge: Cambridge University Press, 2000.
    [4] PITSCH H. Large-eddy simulation of turbulent combustion[J]. Annual Review of Fluid Mechanics, 2006, 38: 453-482. doi: 10.1146/annurev.fluid.38.050304.092133
    [5] 邢竞文, 金捷, 王方. 基于释热率分析的钝体贫油熄火过程分析[J]. 北京航空航天大学学报, 2022, 48(3): 473-484. doi: 10.13700/j.bh.1001-5965.2020.0588

    XING J W, JIN J, WANG F. Lean blowoff process of bluff body based on heat release rate analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(3): 473-484(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0588
    [6] 王方, 韩宇轩, 窦力, 等. 详细化学反应机理对预混丙烷钝体熄火模拟影响[J]. 推进技术, 2021, 42(10): 2295-2305. doi: 10.13675/j.cnki.tjjs.200126

    WANG F, HAN Y X, DOU L, et al. Effects of detailed chemical mechanism on premixed propane bluff body blow-off simulation[J]. Journal of Propulsion Technology, 2021, 42(10): 2295-2305(in Chinese). doi: 10.13675/j.cnki.tjjs.200126
    [7] 魏观溢, 金捷, 王方, 等. 基于PDF-LES的凹腔支板大涡模拟[C]//中国化学会第二届全国燃烧化学学术会议论文集. 北京: 中国化学会, 2017: 33.

    WEI G Y, JIN J, WANG F, et al. The large-eddy simulation of cavity flameholder by PDF-LES method[C]//Proceedings of the Second National Conference on Combustion Chemistry. Beijing: Chinese Chemical Society, 2017: 33 (in Chinese).
    [8] 曾家, 金捷, 张晟, 等. 基于LES-PDF方法的双旋流模型燃烧室数值模拟[J]. 气体物理, 2019, 4(5): 52-64. doi: 10.19527/j.cnki.2096-1642.0789

    ZENG J, JIN J, ZHANG S, et al. Numerical simulation of double-swirled model combustor based on LES-PDF[J]. Physics of Gases, 2019, 4(5): 52-64(in Chinese). doi: 10.19527/j.cnki.2096-1642.0789
    [9] ZHOU L X. Development of SOM combustion model for Reynolds-averaged and large-eddy simulation of turbulent combustion and its validation by DNS[J]. Science in China Series E:Technological Sciences, 2008, 51(8): 1073-1086. doi: 10.1007/s11431-008-0157-y
    [10] ZHOU L X, QIAO L, CHEN X L, et al. A USM turbulence-chemistry model for simulating NOx formation in turbulent combustion[J]. Fuel, 2002, 81(13): 1703-1709. doi: 10.1016/S0016-2361(01)00173-9
    [11] WANG F, ZHOU L, XU C. Large-eddy simulation of correlation moments in turbulent combustion and validation of the RANS-SOM combustion model[J]. Fuel, 2006, 85(9): 1242-1247. doi: 10.1016/j.fuel.2005.11.006
    [12] 王方, 周力行, 许春晓, 等. 预混燃烧大涡模拟和燃烧模型的检验[J]. 推进技术, 2008, 29(1): 33-36. doi: 10.13675/j.cnki.tjjs.2008.01.003

    WANG F, ZHOU L X, XU C X, et al. Large-eddy simulation of premixed combustion and validation of the combustion model[J]. Journal of Propulsion Technology, 2008, 29(1): 33-36(in Chinese). doi: 10.13675/j.cnki.tjjs.2008.01.003
    [13] HU L Y, ZHOU L X, ZHANG J. Large-eddy simulation of a swirling diffusion flame using a SOM SGS combustion model[J]. Numerical Heat Transfer, Part B:Fundamentals, 2006, 50(1): 41-58. doi: 10.1080/10407790500459395
    [14] ZHOU L, HU L, WANG F. Large-eddy simulation of turbulent combustion using different combustion models[J]. Fuel, 2008, 87(13-14): 3123-3131. doi: 10.1016/j.fuel.2008.04.025
    [15] HU L Y, ZHOU L X, LUO Y H. Large-eddy simulation of the Sydney swirling NonPremixed flame and validation of several subgrid-scale models[J]. Numerical Heat Transfer, Part B:Fundamentals, 2008, 53(1): 39-58. doi: 10.1080/10407790701632477
    [16] WANG F, ZHOU L X, XU C X, et al. DNS-LES validation of an algebraic second-order-moment combustion model[J]. Numerical Heat Transfer, Part B:Fundamentals, 2009, 55(6): 523-532. doi: 10.1080/10407780902864821
    [17] XU C, AMEEN M M, SOM S, et al. Dynamic adaptive combustion modeling of spray flames based on chemical explosive mode analysis[J]. Combustion and Flame, 2018, 195: 30-39. doi: 10.1016/j.combustflame.2018.05.019
    [18] DUAN Y F, XIA Z X, MA L K, et al. LES of the Sandia flame series D-F using the Eulerian stochastic field method coupled with tabulated chemistry[J]. Chinese Journal of Aeronautics, 2020, 33(1): 116-133. doi: 10.1016/j.cja.2019.09.022
    [19] 杨天威, 尹钰, 周华, 等. 空间分区自适应燃烧建模研究[C]//中国工程热物理学会燃烧学年会论文. 北京: 中国工程热物理学会, 2022.

    YANG T W, YIN J, ZHOU H, et al. The research of combustion modeling by adaptive spatial-division[C] //Proceedings of Combustion Annual Meeting of Chinese Society of Engineering Thermophysic. Beijing: Chinese Society of Engineering Thermophysic, 2022(in Chinese).
    [20] 王方, 窦力, 魏观溢, 等. 基于PDF-LES模型的凹腔支板火焰稳定器模拟[J]. 工程热物理学报, 2021, 42(3): 758-767.

    WANG F, DOU L, WEI G Y, et al. Simulation of flame stabilizer with concave cavity plate based on PDF-LES model[J]. Journal of Engineering Thermophysics, 2021, 42(3): 758-767 (in Chinese).
    [21] LUO K, BAI Y, YANG J S, et al. A-priori validation of a second-order moment combustion model via DNS database[J]. International Journal of Heat and Mass Transfer, 2015, 86: 415-425. doi: 10.1016/j.ijheatmasstransfer.2015.03.023
    [22] LUO K, LIU R Z, BAI Y, et al. A-priori and a-posteriori studies of a direct moment closure approach for turbulent combustion using DNS data of a premixed flame[J]. Proceedings of the Combustion Institute, 2021, 38(2): 3003-3011. doi: 10.1016/j.proci.2020.06.269
    [23] JONES W P, PRASAD V N. Large eddy simulation of the sandia flame series (D–F) using the Eulerian stochastic field method[J]. Combustion and Flame, 2010, 157(9): 1621-1636. doi: 10.1016/j.combustflame.2010.05.010
    [24] SCHNEIDER C, DREIZLER A, JANICKA J, et al. Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames[J]. Combustion and Flame, 2003, 135(1-2): 185-190. doi: 10.1016/S0010-2180(03)00150-0
    [25] BARLOW R S, FRANK J H. Effects of turbulence on species mass fractions in methane/air jet flames[J]. Symposium (International) on Combustion, 1998, 27(1): 1087-1095. doi: 10.1016/S0082-0784(98)80510-9
    [26] MUSTATA R, VALIÑO L, JIMÉNEZ C, et al. A probability density function Eulerian Monte Carlo field method for large eddy simulations: Application to a turbulent piloted methane/air diffusion flame (Sandia D)[J]. Combustion and Flame, 2006, 145(1-2): 88-104. doi: 10.1016/j.combustflame.2005.12.002
    [27] DI RENZO M, COCLITE A, DE TULLIO M D, et al. LES of the Sandia flame D using an FPV combustion model[J]. Energy Procedia, 2015, 82: 402-409. doi: 10.1016/j.egypro.2015.11.824
    [28] SHEIKHI M, DROZDA T, GIVI P, et al. Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D)[J]. Proceedings of the Combustion Institute, 2005, 30(1): 549-556. doi: 10.1016/j.proci.2004.08.028
    [29] GE Y, CLEARY M J, KLIMENKO A Y. A comparative study of Sandia flame series (D-F) using sparse-Lagrangian MMC modelling[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1325-1332. doi: 10.1016/j.proci.2012.06.059
    [30] JONES W P, LINDSTEDT R P. Global reaction schemes for hydrocarbon combustion[J]. Combustion and Flame, 1988, 73(3): 233-249. doi: 10.1016/0010-2180(88)90021-1
    [31] YAMASHITA H, SHIMADA M, TAKENO T. A numerical study on flame stability at the transition point of jet diffusion flames[J]. Proceedings of the Combustion Institute, 1996, 26(1): 27-3. doi: 10.1016/S0082-0784(96)80196-2
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  22
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-07-21
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答