留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向联结翼总体设计的气动弹性优化

李旭阳 万志强 王晓喆 黎珂宇 杨超

李旭阳,万志强,王晓喆,等. 面向联结翼总体设计的气动弹性优化[J]. 北京航空航天大学学报,2023,49(12):3343-3354 doi: 10.13700/j.bh.1001-5965.2022.0074
引用本文: 李旭阳,万志强,王晓喆,等. 面向联结翼总体设计的气动弹性优化[J]. 北京航空航天大学学报,2023,49(12):3343-3354 doi: 10.13700/j.bh.1001-5965.2022.0074
LI X Y,WAN Z Q,WANG X Z,et al. Aeroelastic optimization for overall design of joined wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3343-3354 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0074
Citation: LI X Y,WAN Z Q,WANG X Z,et al. Aeroelastic optimization for overall design of joined wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3343-3354 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0074

面向联结翼总体设计的气动弹性优化

doi: 10.13700/j.bh.1001-5965.2022.0074
基金项目: 浙江通用航空运行技术研究重点实验室(浙江建德通用航空研究院)开放基金(JDGA2020-4)
详细信息
    通讯作者:

    E-mail:wangxiaozhemvp@buaa.edu.cn

  • 中图分类号: V214.19

Aeroelastic optimization for overall design of joined wing

Funds: Open Fundation of Zhejiang Key laboratory of General Aviation Operation Technology (General Aviation Institute of Zhejiang JianDe) (JDGA2020-4)
More Information
  • 摘要:

    由于前翼和后翼的连接关系,联结翼飞行器气动和结构特性与常规布局飞行器有所不同,相互连接的机翼形成一个复杂的过约束系统,布局参数繁多,多学科设计空间增加,分析困难。为分析不同布局参数对联结翼整体性能的影响,基于工程梁理论,对不同前后翼连接位置、前/后掠角、上/下反角、端板高度、根梢比等参数的联结翼开展气动弹性优化研究,以最小结构质量为目标,在静气动弹性与颤振等条件约束下,通过遗传算法对联结翼梁架结构翼盒剖面参数展开设计,并采用高精度计算流体力学/计算固体力学(CFD/CSD)耦合方法分析优化后的模型升阻特性。通过气动弹性优化,分别得到最佳结构性能和最佳气动性能的联结翼布局参数,结果表明:这种针对联结翼每个重要参数的最优解集可发现联结翼设计的规律,并为设计提供支撑。

     

  • 图 1  联结翼弯轴示意图

    Figure 1.  Schematic diagram of tilted bending axis of a joined wing

    图 2  联结翼翼盒剖面简化示意图

    Figure 2.  Schematic diagram of simplified wing box section of joined wing

    图 3  联结翼布局参数

    Figure 3.  Joined wing layout parameters

    图 4  联结翼半模梁架结构模型

    Figure 4.  Structural beam half-model of joined wing

    图 5  联结翼偶极子格网法模型

    Figure 5.  Doublet lattice method shape of joined wing

    图 6  联结翼CFD方法气动模型

    Figure 6.  CFD method aerodynamic model of joined wing

    图 7  三维气动模型空间网格划分

    Figure 7.  Spatial mesh divisions of three-dimensional aerodynamic model

    图 8  联结翼设计变量分区示意图

    Figure 8.  Sketch of joined wing of different design sections

    图 9  CFD/CSD分析流程图

    Figure 9.  Flow chart of CFD/CSD analysis

    图 10  优化后前翼及外翼刚度分布

    Figure 10.  Stiffness distributions of front wing and outer wing after optimization

    图 11  优化后后翼刚度分布

    Figure 11.  Stiffness distributions of rear wing after optimization

    图 12  不同连接点位置优化后全机总质量、机翼结构质量及机翼结构质量系数

    Figure 12.  Total mass of whole aircraft, wing structure mass and wing structure mass coefficient after optimization of different joint locations

    图 13  不同连接点位置优化后升阻比

    Figure 13.  Lift to drag ratio after optimization of different joint locations

    图 14  不同外翼掠角优化后全机总质量、机翼结构质量及机翼结构质量系数

    Figure 14.  Total mass of whole aircraft, wing structure mass and wing structure mass coefficient after optimization of different swept angles of outer wing

    图 15  不同外翼掠角优化后升阻比

    Figure 15.  Lift to drag ratio after optimization of different swept angles of outer wing

    图 16  不同前翼后掠角优化后全机总质量、机翼结构质量及机翼结构质量系数

    Figure 16.  Total mass of whole aircraft, wing structure mass and wing structure mass coefficient after optimization of different sweepbacks of front wing

    图 17  不同前翼后掠角优化后升阻比

    Figure 17.  Lift to drag ratio after optimization of different sweepbacks of front wing

    图 18  不同后翼前掠角优化后全机总质量、机翼结构质量及机翼结构质量系数

    Figure 18.  Total mass of whole aircraft, wing structure mass and wing structure mass coefficient after optimization of different sweepforwards of rear wing

    图 19  不同后翼前掠角优化后升阻比

    Figure 19.  Lift to drag ratio after optimization of different sweepforwards of rear wing

    图 20  不同前翼(外翼)上反角优化后全机总质量、机翼结构质量及机翼结构质量系数

    Figure 20.  Total mass of whole aircraft, wing structure mass and wing structure mass coefficient after optimization of different anhedrals of front/outer wings

    图 21  不同前翼(外翼)上反角优化后升阻比

    Figure 21.  Lift to drag ratio after optimization of different anhedrals of front/outer wings

    图 22  不同后翼下反角优化后全机总质量、机翼结构质量及机翼结构质量系数

    Figure 22.  Total mass of whole aircraft, wing structure mass and wing structure mass coefficient after optimization of different negative dihedrals of rear wing

    图 23  不同后翼下反角优化后升阻比

    Figure 23.  Lift to drag ratio after optimization of different negative dihedrals of rear wing

    图 24  不同端板高度比优化后全机总质量、机翼结构质量及机翼结构质量系数

    Figure 24.  Total mass of whole aircraft, wing structure mass and wing structure mass coefficient after optimization of different plate height ratios

    图 25  不同端板高度比优化后升阻比

    Figure 25.  Lift to drag ratio after optimization of different plate height ratios

    图 26  不同机翼内段根梢比优化后全机总质量、机翼结构质量及机翼结构质量系数

    Figure 26.  Total mass of whole aircraft, wing structure mass and wing structure mass coefficient after optimization of different taper ratios of inner wings

    图 27  不同机翼内段根梢比优化后升阻比

    Figure 27.  Lift to drag ratio after optimization of different taper ratios of inner wings

    表  1  基准模型外形参数值

    Table  1.   Parameter values of benchmark model

    参数数值参数数值
    $ l $/m22.86$ {b_{\text{r}}} $/m2.54
    $ {l_{\text{k}}} $/m4.63$ {b_{{\text{rk}}}} $/m1.52
    $ {l_{\text{j}}} $/m16.00$ {b_{\text{t}}} $/m0.75
    $ {b_{\text{f}}} $/m3.51 $ h $/m1.19
    $ {b_{{\text{fk}}}} $/m2.10$ {\chi _{\text{o}}} $/(°)20.0
    $ {\chi _{\text{f}}} $/(°)20.0$ {\varphi _{\text{f}}} $/(°)4.0
    $ {\chi _{\text{r}}} $/(°)30.0$ {\varphi _{\text{r}}} $/(°)0
    下载: 导出CSV

    表  2  气动弹性约束条件

    Table  2.   Aeroelasctic constraint conditions

    约束下限上限
    dt,z7.5%×l
    dt,x1.5%×l
    dj,z7.5%×lj
    dj,x1.5%×lj
    φt/(°)−22
    φj/(°)−22
    Vf/(m·s−1)90
    下载: 导出CSV

    表  3  联结翼参数变化范围

    Table  3.   Variation range of joined wing parameters

    $ {p_{\text{j}}} $/(°)$ {\chi _{\text{o}}} $/(°)$ {\chi _{\text{f}}} $/(°)$ {\chi _{\text{r}}} $/(°)$ {\varphi _{\text{f}}} $/(°)$ {\varphi _{\text{r}}} $/(°)$ {r_{\text{h}}} $$ {\eta _{\text{k}}} $
    0.4301010000.51.33
    0.5202020220.751.67
    0.6103030441.02.0
    0.704040661.52.33
    0.8−105050882.0
    0.9−20
    1.0−30
    下载: 导出CSV
  • [1] WOLKOVITCH J. Joined wing aircraft: US3942747[P]. 1976-03-09.
    [2] 楚亮, 马东立, 张朔, 等. 一种联结翼布局气动特性的求解模型[J]. 航空学报, 2010, 31(5): 909-913.

    CHU L, MA D L, ZHANG S, et al. Solution model for aerodynamic characteristics of joined-wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(5): 909-913(in Chinese).
    [3] WOLKOVITCH J. The joined wing - an overview[J]. Journal of Aircraft, 1986, 23(3): 161-178. doi: 10.2514/3.45285
    [4] CAVALLARO R, DEMASI L. Challenges, ideas, and innovations of joined-wing configurations: A concept from the past, an opportunity for the future[J]. Progress in Aerospace Sciences, 2016, 87: 1-93. doi: 10.1016/j.paerosci.2016.07.002
    [5] BLAIR M B, CANFIELD R. A joined-wing structural weight modeling study[C]//Proceedings of the 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2002.
    [6] LI X Y, WAN Z Q, WANG X Z, et al. Aeroelastic optimization design of the global stiffness for a joined wing aircraft[J]. Applied Sciences, 2021, 11(24): 11800. doi: 10.3390/app112411800
    [7] SMALLWOOD B, CANFIELD R, TERZUOLI A. Structurally integrated antennas on a joined-wing aircraft[C]//Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2003.
    [8] KIM Y I, PARK G J, KOLONAY R M, et al. Nonlinear response structural optimization of a joined wing using equivalent loads[J]. AIAA Journal, 2008, 46(11): 2703-2713. doi: 10.2514/1.33428
    [9] BOND V L, CANFIELD R A, SULEMAN A, et al. Aeroelastic scaling of a joined wing for nonlinear geometric stiffness[J]. AIAA Journal, 2012, 50(3): 513-522. doi: 10.2514/1.41139
    [10] GREEN N, CANFIELD R, SWENSON E, et al. Structural optimization of joined-wing beam model with bend/twist coupling using ESL[C]//Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009.
    [11] DEMASI L, LIVNE E. The structural order reduction challenge in the case of geometrically nonlinear joined-wing confgurations[C]//Proceedings of the 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2007.
    [12] CAVALLARO R, IANNELLI A, DEMASI L, et al. Phenomenology of nonlinear aeroelastic responses of highly deformable joined wings[J]. Advances in Aircraft and Spacecraft Science, 2015, 2(2): 125-168. doi: 10.12989/aas.2015.2.2.125
    [13] LIVNE E. Aeroelasticity of joined-wing airplane configurations - Past work and future challenges - a survey[C]//Proceedings of the 19th AIAA Applied Aerodynamics Conference. Reston: AIAA, 2001.
    [14] BOMBARDIERI R, CAVALLARO R, DEMASI L. A historical perspective on the aeroelasticity of box wings and prandtlplane with new findings[C]//Proceedings of the 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2016.
    [15] 李少华, 杨智春, 谷迎松, 等. 复合材料连翼的气动弹性剪裁研究[J]. 西北工业大学学报, 2008, 26(3): 292-296. doi: 10.3969/j.issn.1000-2758.2008.03.005

    LI S H, YANG Z C, GU Y S, et al. A different aeroelastic tailoring of a composite joined-wing[J]. Journal of Northwestern Polytechnical University, 2008, 26(3): 292-296(in Chinese). doi: 10.3969/j.issn.1000-2758.2008.03.005
    [16] 张波成, 万志强, 杨超. 连翼布局飞行器飞行载荷与颤振分析[J]. 工程力学, 2010, 27(8): 229-233.

    ZHANG B C, WAN Z Q, YANG C. Flight loads and flutter anlysis of the joined wing aircraft[J]. Engineering Mechanics, 2010, 27(8): 229-233(in Chinese).
    [17] 杨勋平, 张利珍. 考虑结构静气弹变形的连接机翼气动外形优化设计[J]. 科学技术与工程, 2010, 10(18): 4566-4569. doi: 10.3969/j.issn.1671-1815.2010.18.052

    YANG X P, ZHANG L Z. Aerodynamic optimization design of the joined-wing configuration considering static aeroelastics[J]. Science Technology and Engineering, 2010, 10(18): 4566-4569(in Chinese). doi: 10.3969/j.issn.1671-1815.2010.18.052
    [18] 侯祥民, 黄俊. 双吊舱联翼布局太阳能飞机气动弹性建模研究[J]. 飞机设计, 2013, 33(1): 6-9.

    HOU X M, HUANG J. Study of model build of double-podded joined-wing solar powered aircraft[J]. Aircraft Design, 2013, 33(1): 6-9(in Chinese).
    [19] 张书俊, 王运涛, 孟德虹. 大展弦比联接翼静气动弹性研究[J]. 空气动力学学报, 2013, 31(2): 170-174.

    ZHANG S J, WANG Y T, MENG D H. Study on static aeroelasticity for high aspect ratio joined-wings[J]. Acta Aerodynamica Sinica, 2013, 31(2): 170-174(in Chinese).
    [20] 张强, 祝小平, 周洲, 等. 基于CFD/CSD耦合的连结翼静气动弹性计算研究[J]. 西北工业大学学报, 2016, 34(3): 437-442.

    ZHANG Q, ZHU X P, ZHOU Z, et al. Numerical research on static aeroelasticity of joined wing based on CFD/CSD coupling[J]. Journal of Northwestern Polytechnical University, 2016, 34(3): 437-442(in Chinese).
    [21] MIURA H, SHYU A T, WOLKOVITCH J. Parametric weight evaluation of joined wings by structural optimization[J]. Journal of Aircraft, 1988, 25(12): 1142-1149. doi: 10.2514/3.45714
    [22] RASMUSSEN C C, CANFIELD R A, BLAIR M. Optimization process for configuration of flexible joined-wing[J]. Structural and Multidisciplinary Optimization, 2009, 37(3): 265-277. doi: 10.1007/s00158-008-0229-4
    [23] SOTOUDEH Z, HODGES D H. Parametric study of joined-wing aircraft geometry[C]//Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2010.
    [24] LEE J Y, BENJAMIN TAN K J, WANG P C. Parametric investigation of box wing configuration in viscous flow regime[C]//Proceedings of the 2018 Applied Aerodynamics Conference. Reston: AIAA, 2018.
    [25] 王小妮, 余雄庆. 大展弦比联接翼结构重量估算[J]. 北京航空航天大学学报, 2005, 31(12): 1289-1292.

    WANG X N, YU X Q. Predications of structural weight for high aspect ratio joined-wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(12): 1289-1292(in Chinese).
    [26] 李光里, 李国文, 黎军, 等. 连接翼布局气动特性研究[J]. 空气动力学学报, 2006, 24(4): 513-519. doi: 10.3969/j.issn.0258-1825.2006.04.023

    LI G L, LI G W, LI J, et al. The aerodynamics investigation of the joined-wing configuration[J]. Acta Aerodynamica Sinica, 2006, 24(4): 513-519(in Chinese). doi: 10.3969/j.issn.0258-1825.2006.04.023
    [27] 郭卫刚, 贾忠湖, 康小伟. 某联接翼飞机外形参数变化对稳定性影响的研究[J]. 飞机设计, 2007, 27(2): 37-40. doi: 10.3969/j.issn.1673-4599.2007.02.008

    GUO W G, JIA Z H, KANG X W. Impacts of aerodynamic configuration parameters on stabilities of joined-wing aircraft[J]. Aircraft Design, 2007, 27(2): 37-40(in Chinese). doi: 10.3969/j.issn.1673-4599.2007.02.008
    [28] 吴光辉, 王妙香, 张健. 盒式布局飞机的纵向气动参数优化研究[J]. 飞行力学, 2007, 25(4): 5-7. doi: 10.3969/j.issn.1002-0853.2007.04.002

    WU G H, WANG M X, ZHANG J. Research on longitudinal aerodynamic parameter optimize of a joined-wing configuration aircraft[J]. Flight Dynamics, 2007, 25(4): 5-7(in Chinese). doi: 10.3969/j.issn.1002-0853.2007.04.002
    [29] 尹钧, 曹义华, 许正宇. 联结翼飞机主要布局参数对全机升阻特性影响研究[J]. 航空科学技术, 2015, 26(2): 14-18.

    YIN J, CAO Y H, XU Z Y. Impacts study of joined wing aircraft main configuration parameter on lift-drag characteristic[J]. Aeronautical Science & Technology, 2015, 26(2): 14-18(in Chinese).
    [30] 孙俊磊, 王和平, 周洲, 等. 基于天线安装的菱形翼无人机翼型优化设计[J]. 航空学报, 2017, 38(11): 121072.

    SUN J L, WANG H P, ZHOU Z, et al. Aerodynamic optimization design of diamond-wing configuration UAV airfoil based on radar antenna installation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11): 121072(in Chinese).
  • 加载中
图(27) / 表(3)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  27
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-15
  • 录用日期:  2022-03-11
  • 网络出版日期:  2022-03-28
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答