留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连续变推力离子推力器双荷离子特性分析与诊断

胡竟 耿海 王东升 郭德洲 赵勇 杨福全

胡竟,耿海,王东升,等. 连续变推力离子推力器双荷离子特性分析与诊断[J]. 北京航空航天大学学报,2023,49(12):3303-3310 doi: 10.13700/j.bh.1001-5965.2022.0078
引用本文: 胡竟,耿海,王东升,等. 连续变推力离子推力器双荷离子特性分析与诊断[J]. 北京航空航天大学学报,2023,49(12):3303-3310 doi: 10.13700/j.bh.1001-5965.2022.0078
HU J,GENG H,WANG D S,et al. Characteristic analysis and diagnosis of double charged ions of continuous variable-thrust ion thruster[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3303-3310 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0078
Citation: HU J,GENG H,WANG D S,et al. Characteristic analysis and diagnosis of double charged ions of continuous variable-thrust ion thruster[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3303-3310 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0078

连续变推力离子推力器双荷离子特性分析与诊断

doi: 10.13700/j.bh.1001-5965.2022.0078
基金项目: 民用航天预先研究项目(D010509)
详细信息
    通讯作者:

    E-mail:marine115@126.com

  • 中图分类号: V439+.4

Characteristic analysis and diagnosis of double charged ions of continuous variable-thrust ion thruster

Funds: Civil Space Advance Research Project (D010509)
More Information
  • 摘要:

    离子推力器束流离子中的双荷离子在制约栅极组件工作寿命的同时也影响到推力器实际推力的大小,其在总束流中的占比直接决定了推力器寿命、推力等关键性能指标的符合性。为准确、快速研判10 cm氙离子推力器在宽范围推力调节过程中的双荷离子占比,利用放电室经验模型,分析了推力器变推力调节过程中双荷离子的变化特性及其影响因素,结合实际工作参数计算得到了不同推力工况点下双荷离子的理论占比。在此基础上,采用E×B探针诊断系统测试获得了相应推力工况点下双荷离子的实验占比,并将理论计算结果与实验测试结果进行了对比。研究结果表明:离子推力器放电室内双荷离子的占比是关于推力器工质利用率等性能参数及原初电子与麦氏电子间的密度比、电子温度等相关等离子体参数的函数;在变推力调节过程中,随着放电室内阳极功率的增加,束流中的双荷离子比例不断上升,且其引出束流中双荷离子比例分布呈现出强烈的非线性分布,整体表现为伴随增长的趋势。研究为离子推力器在轨控制策略的优化设计及性能评估提供了技术支持。

     

  • 图 1  放电室内电流平衡过程示意图

    Figure 1.  Schematic diagram of current balance process in discharge chamber

    图 2  E×B 探针工作原理示意图

    Figure 2.  Working principle diagram of E×B probe

    图 3  双荷离子诊断 E×B 探针

    Figure 3.  Double charged ion diagnostic E×B probe

    图 4  不同推力工况点下10 cm连续变推力离子推力器的离子束流引出状态

    Figure 4.  Working state of 10 cm continuous variable-thrust ion thruster under different thrust conditions

    图 5  不同推力工况点下 E×B 探针的束流扫描结果

    Figure 5.  Beam scanning results of E×B probe under different thrust conditions

    图 6  宽范围束流调节中双荷离子比例变化关系

    Figure 6.  Relationship of double charged ion ratio variation in wide range thrust regulation

    表  1  20 mN 工况点下推力器工作参数

    Table  1.   Working parameters at 20 mN operating point

    工作参数电压/V电流/A
    阳极402.8
    主阴极触持极10.50.8
    励磁线圈220.62
    屏栅11500.376
    加速栅−1500.001
    中和器触持极17.21.4
    下载: 导出CSV

    表  2  20 mN 工况点下放电室等离子体特性参数(理论计算结果)

    Table  2.   Plasma characteristic parameters of discharge chamber at 20 mN operating point (theoretical calculation results)

    中性气体原子密度/m−3原初电子密度/m−3麦氏电子温度/eV放电室产生离子电流/mA原初电子与麦氏电子密度比
    0.81×10180.85×10175.354760.231
    下载: 导出CSV

    表  3  不同推力工况点下双荷离子比例数据对比

    Table  3.   Comparison of double charged ion ratio data at different thrust working points

    标称推力点/ mN双荷离子比例(双/单)误差/%
    理论值实测值
    10.0230.0224.55
    30.0630.069−8.70
    150.1100.115−4.35
    200.1650.168−1.79
    下载: 导出CSV
  • [1] WILLIAMS L T, WALKER M L R. Initial performance evaluation of a gridded radio frequency ion thruster[J]. Journal of Propulsion and Power, 2014, 30(3): 645-655. doi: 10.2514/1.B35018
    [2] 陈茂林, 夏广庆, 毛根旺. 多模式离子推力器栅极系统三维粒子模拟仿真[J]. 物理学报, 2014, 63(18): 189-197. doi: 10.7498/aps.63.182901

    CHEN M L, XIA G Q, MAO G W. Three-dimensional particle in cell simulation of multi-mode ion thruster optics system[J]. Acta Physica Sinica, 2014, 63(18): 189-197(in Chinese). doi: 10.7498/aps.63.182901
    [3] BURAK K K, DEBORAH A L. Three-dimensional simulations of backflows from ion thruster plumes using unstructured grid refinement[J]. Journal of Propulsion and Power, 2017, 33(1): 264-275. doi: 10.2514/1.B35847
    [4] 龙建飞, 张天平, 李娟, 等. 离子推力器栅极透过率径向分布特性研究[J]. 物理学报, 2017, 66(16): 63-71. doi: 10.7498/aps.66.162901

    LONG J F, ZHANG T P, LI J, et al. Optical transparency radial distribution of ion thruster[J]. Acta Physica Sinica, 2017, 66(16): 63-71(in Chinese). doi: 10.7498/aps.66.162901
    [5] CANUTO E, MASSOTTI L. All-propulsion design of the drag-free and attitude control of the European satellite GOCE[J]. Acta Astronautica, 2009, 64(2-3): 325-344. doi: 10.1016/j.actaastro.2008.07.017
    [6] 胡竟, 王亮, 张天平, 等. LIPS-300 离子推力器环形会切磁场等效磁路分析研究[J]. 推进技术, 2018, 39(3): 715-720.

    HU J, WANG L, ZHANG T P, et al. Research on equivalent magnetic circuit of ring-cusp magnet field for LIPS-300 ion thruster[J]. Journal of Propulsion Technology, 2018, 39(3): 715-720(in Chinese).
    [7] 杨福全, 王蒙, 郑茂繁, 等. 10 cm离子推力器放电室性能优化研究[J]. 推进技术, 2017, 38(1): 235-240.

    YANG F Q, WANG M, ZHENG M F, et al. Optimization of performance of discharge chamber of a 10 cm diameter ion thruster[J]. Journal of Propulsion Technology, 2017, 38(1): 235-240(in Chinese).
    [8] 席竹君, 杨福全, 高俊, 等. 励磁电流对离子推力器推力变化影响研究[J]. 真空与低温, 2017, 23(2): 98-101. doi: 10.3969/j.issn.1006-7086.2017.02.007

    XI Z J, YANG F Q, GAO J, et al. The research on the influence of magnet current towards the ion thruster thrust[J]. Vacuum and Cryogenics, 2017, 23(2): 98-101(in Chinese). doi: 10.3969/j.issn.1006-7086.2017.02.007
    [9] 胡竟, 杨福全, 郭德洲, 等. 基于CFD 的10 cm 氙离子推力器阳极推进剂供给方式优化[J]. 北京航空航天大学学报, 2020, 46(8): 1476-1484.

    HU J, YANG F Q, GUO D Z, et al. Optimization of anode propellant allocation manner of 10 cm xenon ion thruster based on CFD[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1476-1484(in Chinese).
    [10] 胡竟, 杨福全, 郭德洲, 等. 10 cm氙离子推力器变推力特性研究[J]. 推进技术, 2020, 41(10): 2382-2389.

    HU J, YANG F Q, GUO D Z, et al. Analysis on variable-thrust characteristic of 10 cm xenon ion thruster[J]. Journal of Propulsion Technology, 2020, 41(10): 2382-2389(in Chinese).
    [11] XIE K, XIA Q, WILLIAMS J D, et al. Extracted current, bias voltage, and ion production of cathodic hollow-cathode-driven plasma contactors[J]. Journal of Space craft and Rockets, 2015, 52(4): 1181-1192. doi: 10.2514/1.A33049
    [12] XIE K, MARTINEZ R A, WILLIAMS J D. Current-voltage characteristics of a cathodic plasma contactor with discharge chamber for application in electrodynamic tether propulsion[J]. Journal of Physics D:Applied Physics, 2014, 47(15): 494-500.
    [13] 钟凌伟, 刘宇, 任军学, 等. 离子发动机栅极系统中束流离子的三维模拟[J]. 航空动力学 报, 2010, 25(9): 2125-2131.

    ZHONG L W, LIU Y, REN J X, et al. Three- dimensional simulation of beam ions in ion thruster optics system[J]. Journal of Aerospace Power, 2010, 25(9): 2125-2131(in Chinese).
    [14] 刘畅, 汤海滨, 张振鹏, 等. 离子发动机加速栅极腐蚀深度的DFF测量与数值模拟[J]. 航空动力学报, 2008, 23(3): 574-579. doi: 10.13224/j.cnki.jasp.2008.03.027

    LIU C, TANG H B, ZHANG Z P, et al. Numerical simulation and DFF measurement of ion thruster accelerator grid erosion depth[J]. Journal of Aerospace Power, 2008, 23(3): 574-579(in Chinese). doi: 10.13224/j.cnki.jasp.2008.03.027
    [15] 任军学, 顾左, 郭宁, 等. 离 子 发 动 机 羽 流 特性的数值模拟[J]. 航空动力学报, 2013, 28(6): 1372-1379.

    REN J X, GU Z, GUO N, et al. Numerical simulation of characteristics of ion thruster plume[J]. Journal of Aerospace Power, 2013, 28(6): 1372-1379(in Chinese).
    [16] 鹿畅, 梁学明, 夏广庆, 等. 环型离子推力器放电机理研究进展[J]. 固体火箭技术, 2021, 44(2): 215-222.

    LU C, LIANG X M, XIA G Q, et al. Research progress on discharge mechanism of annular ion thruster[J]. Journal of Solid Rocket Technology, 2021, 44(2): 215-222(in Chinese).
    [17] 鹿畅, 夏广庆, 孙斌. 环型离子推力器放电室参数对推力器性能的影响[J]. 真空与低温, 2022, 28(1): 39-47. doi: 10.3969/j.issn.1006-7086.2022.01.005

    LU C, XIA G Q, SUN B. Effect of discharge chamber parameters of annular ion thruster on the performance[J]. Vacuum and Cryogenics, 2022, 28(1): 39-47(in Chinese). doi: 10.3969/j.issn.1006-7086.2022.01.005
    [18] 孔令轩, 顾左, 郭德洲, 等. 氙离子推力器束流双荷离子特性及诊断[J]. 航空动力学报, 2017, 32(4): 970-975. doi: 10.13224/j.cnki.jasp.2017.04.024

    KONG L X, GU Z, GUO D Z, et al. Characterization and measurement of doubly charged ions in xenon ion thruster beam[J]. Journal of Aerospace Power, 2017, 32(4): 970-975(in Chinese). doi: 10.13224/j.cnki.jasp.2017.04.024
    [19] WILLIAMS G J J, DOMONKOS M T, CHAVEZ J M. Measurement of doubly charged ions in ion thruster plumes: IEPC-2001-310 [R]. Washington, D. C. : IEPC, 2001: 1-23.
    [20] NAKANO M. Doubly charged ion effect on life prediction accuracy of ion acceleration grid system[J]. Vacuum, 2013, 88(1): 70-74.
    [21] NAKANO M. Sensitivity analysis of the effect of doubly charged ions on ion acceleration grid erosion[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2011, 59(695): 344-351.
    [22] PETERS R. Double ion production in mercury thrusters: NASA CR-135019 [R]. Washington, D. C. : NASA, 1976.
    [23] PETERS R, WILBUR P J, VAHRENKAMP R. Mercury ion thruster doubly charged ion model: AIAA-1976-1010[R]. Reston: AIAA, 1976.
    [24] FARNELL C C, WILLIAMS J D, WILBUR P J. Numerical simulation of ion thruster optics: IEPC-2003-0073[R]. Washington, D. C. : IEPC, 2003: 1-163
    [25] BOYD I, CROFTON M. Computational study of extraction grid erosion through ion impact: AIAA-2000-3664[R]. Reston: AIAA, 2000.
    [26] GOEBEL D M, KATZ I. Fundamentals of electric propulsion: Ion and hall thruster[M]. Hoboken: John Wiley and Sons, 2008: 91-182.
    [27] 陈娟娟, 张天平, 刘明正, 等. LIPS-200离子推力器放电室原初电子动力学行为的数值模拟研究[J]. 推进技术, 2015, 36(1): 155-160. doi: 10.13675/j.cnki.tjjs.2015.01.023

    CHEN J J, ZHANG T P, LIU M Z, et al. Investigation on dynamical behavior of primary electrons in LIPS-200 ion thruster discharge chamber[J]. Journal of Propulsion Technology, 2015, 36(1): 155-160(in Chinese). doi: 10.13675/j.cnki.tjjs.2015.01.023
    [28] MIKELLIDES I, KATZ I, MANDELL M. A 1-D model of the Hall-effect thruster with an exhaust region: AIAA-2001-3505[R]. Reston: AIAA, 2001.
    [29] WILLIAMS G J, SMITH T B, GALLIMORE A D. Measurement of 30-centimeter ion thruster discharge cathode erosion[J]. Journal of Propulsion and Power, 2008, 24(5): 973-980. doi: 10.2514/1.22982
    [30] 唐福俊, 张天平. 离子推力器羽流测量E×B探针设计及误差分析[J]. 真空与低温, 2007, 13(2): 77-80. doi: 10.3969/j.issn.1006-7086.2007.02.003

    TANG F J, ZHANG T P. Analysis and design of E×B probe for measurement of ion thruster plume[J]. Vacuum and Cryogenics, 2007, 13(2): 77-80(in Chinese). doi: 10.3969/j.issn.1006-7086.2007.02.003
    [31] KATZ I, GARDNER B M, MANDELL M J, et al. Model of plasma contactor performance[J]. Journal of Spacecraft and Rockets, 1997, 34(6): 824-828. doi: 10.2514/2.3294
    [32] BROPHY J R, GARNER C E, GOODFELLOW K D. Electric propulsion system technology: NASA CR-194100[R]. Washington, D. C. : NASA, 1990.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  85
  • HTML全文浏览量:  17
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 录用日期:  2022-05-06
  • 网络出版日期:  2022-05-24
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答