留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层黏接结构的阵列超声检测评价方法

周正干 王俊 李洋 王飞 危荃

周正干,王俊,李洋,等. 多层黏接结构的阵列超声检测评价方法[J]. 北京航空航天大学学报,2023,49(12):3207-3214 doi: 10.13700/j.bh.1001-5965.2022.0084
引用本文: 周正干,王俊,李洋,等. 多层黏接结构的阵列超声检测评价方法[J]. 北京航空航天大学学报,2023,49(12):3207-3214 doi: 10.13700/j.bh.1001-5965.2022.0084
ZHOU Z G,WANG J,LI Y,et al. Ultrasonic array testing and evaluation method of multilayer bonded structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3207-3214 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0084
Citation: ZHOU Z G,WANG J,LI Y,et al. Ultrasonic array testing and evaluation method of multilayer bonded structures[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3207-3214 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0084

多层黏接结构的阵列超声检测评价方法

doi: 10.13700/j.bh.1001-5965.2022.0084
基金项目: 上海航天科技创新基金(SAST2019-128)
详细信息
    通讯作者:

    E-mail:zzhenggan@buaa.edu.cn

  • 中图分类号: V467;TB553

Ultrasonic array testing and evaluation method of multilayer bonded structures

Funds: Shanghai Aerospace Science and Technology Innovation Fund (SAST2019-128)
More Information
  • 摘要:

    在金属与橡胶等非金属材料的多层黏接结构的超声检测中,介质间声阻抗差异和超声衰减显著,致使脱黏缺陷检测信噪比低,缺陷识别困难。为了提高多层黏接结构中脱黏缺陷的检出能力,提出了基于线性阵列超声换能器的超声检测评价方法。分析了声波在黏接界面的传播特性,得出声波在多介质层系的反射系数频谱关系;基于多层黏接结构的三维CAD检测模型,建立多层结构的阵列超声声束路径通用计算方法,依据多层介质的刚度矩阵传递模型,构建数值仿真分析模型,实现阵列超声聚焦方案和检测工艺的设计;分析了不同黏接状态下界面回波信号的幅度谱,提出采用幅度谱特征进行C扫描成像的方法。实验结果表明:所提阵列超声检测评价方法可有效提升多层黏接结构的检测效率,提高检测信噪比,降低脱黏缺陷C扫描成像表征的复杂度。

     

  • 图 1  阵列超声在介质中的传播示意

    Figure 1.  Propagation schematic of ultrasonic array wave in mediums

    图 2  声波在多层介质中的反射及透射

    Figure 2.  Reflection and transmission of sound waves in multilayer media

    图 3  多层黏接结构的线性扫描方式

    Figure 3.  Linear scanning method of multilayer bonding structure

    图 4  多层介质的声束路径计算示意

    Figure 4.  Calculation schematic of acoustic beam path in multilayer media

    图 5  三维聚焦声线路径计算流程

    Figure 5.  Calculation process of 3D focused sound ray path

    图 6  阵列超声聚焦声线计算结果

    Figure 6.  Calculation results of ultrasound array focused sound ray

    图 7  阵列超声动态声场传播过程

    Figure 7.  Propagation process of ultrasonic array dynamic sound field

    图 8  首层为高声阻抗介质的多层黏接界面反射系数频谱

    Figure 8.  Reflection coefficient spectrum of bonding interface with high acoustic impedance medium as the first layer

    图 9  多层黏接结构的超声检测仿真信号

    Figure 9.  Simulation signal of ultrasonic testing for multi-layer bonding structure

    图 10  预置脱黏缺陷的多层黏接试样

    Figure 10.  Multilayer bonding sample with preset de-bonding defects

    图 11  首层为低声阻抗介质的多层黏接界面反射系数频谱

    Figure 11.  Reflection coefficient spectrum of bonding interface with low acoustic impedance medium as the first layer

    图 12  多层黏接试样的C扫描成像结果

    Figure 12.  C-scan imaging result of multilayer bonding sample

    表  1  单通道及阵列超声方法检测效果对比

    Table  1.   Comparison of detection effect between single-channel ultrasonic and ultrasonic array method

    检测方法检测用时/min平均信噪比/dB缺陷定量误差/%
    单通道超声检测12.3513.77 7.57
    阵列超声检测 0.4615.8913.64
    下载: 导出CSV
  • [1] 李明轩, 王小民, 安志武. 粘接界面特性的超声检测与评价[J]. 应用声学, 2013, 32(3): 190-198. doi: 10.11684/j.issn.1000-310X.2013.03.005

    LI M X, WANG X M, AN Z W. Ultrasonic testing and evaluation of bonding characteristics[J]. Applied Acoustics, 2013, 32(3): 190-198(in Chinese). doi: 10.11684/j.issn.1000-310X.2013.03.005
    [2] 姬文苏, 丁玉奎. 火箭发动机多层粘接结构超声检测研究[J]. 兵工学报, 2015, 36(S1): 364-368.

    JI W S, DING Y K. Study on ultrasonic testing of multi-layer bonding structure of rocket engine[J]. Acta Armamentarii, 2015, 36(S1): 364-368(in Chinese).
    [3] 董俊冬. 金属-橡胶多界面粘接质量的超声检测方法研究[D]. 南昌: 南昌航空大学, 2019.

    DONG J D. Study on ultrasonic testing method of metal rubber multi interface bonding quality[D]. Nanchang: Nanchang Hangkong University, 2019(in Chinese).
    [4] 刘嘉同, 金永, 张浩亚, 等. 基于多层界面脱粘的超声检测方法研究[J]. 国外电子测量技术, 2020, 39(9): 58-62. doi: 10.19652/j.cnki.femt.2002163

    LIU J T, JIN Y, ZHANG H Y, et al. Research on ultrasonic testing method based on multi-layer interface debonding[J]. Foreign Electronic Measurement Technology, 2020, 39(9): 58-62(in Chinese). doi: 10.19652/j.cnki.femt.2002163
    [5] 王强, 毛捷, 李威, 等. 橡胶-钢粘接结构的谐振超声编码检测方法[J]. 机械工程学报, 2020, 56(20): 36-41.

    WANG Q, MAO J, LI W, et al. Resonant ultrasonic code testing method for rubber steel bonded structure[J]. Journal of Mechanical Engineering, 2020, 56(20): 36-41(in Chinese).
    [6] 周昌智, 李明轩, 毛捷. 利用多阶谐振频率对多层结构背覆薄层厚度的反演[J]. 声学技术, 2007, 26(5): 1006-1007. doi: 10.3969/j.issn.1000-3630.2007.05.064

    ZHOU C Z, LI M X, MAO J. Inversion of the thickness of overlying thin layer of multi-layer structure by using multi-order resonant frequency[J]. Acoustic Technology, 2007, 26(5): 1006-1007(in Chinese). doi: 10.3969/j.issn.1000-3630.2007.05.064
    [7] ZHOU H, LIU G. A model-based ultrasonic quantitative evaluation method for bonding quality of multi-layered material[J]. Measurement, 2012, 45(6): 1414-1423. doi: 10.1016/j.measurement.2012.03.023
    [8] VELICHKO A, WILCOX P D. An analytical comparison of ultrasonic array imaging algorithms[J]. The Journal of the Acoustical Society of America, 2010, 127(4): 2377-2384. doi: 10.1121/1.3308470
    [9] ANAND C, GROVES R, BENEDICTUS R. A Gaussian beam based recursive stiffness matrix model to simulate ultrasonic array signals from multi-layered media[J]. Sensors, 2020, 20(16): 4371. doi: 10.3390/s20164371
    [10] JIN H, CHEN J. An efficient wavenumber algorithm towards real-time ultrasonic full-matrix imaging of multi-layered medium[J]. Mechanical Systems and Signal Processing, 2021, 149: 107149. doi: 10.1016/j.ymssp.2020.107149
    [11] DOLMATOV D O, SEDNEV D A, BULAVINOV A N, et al. Applying the algorithm of calculation in the frequency domain to ultrasonic tomography of layered inhomogeneous media using matrix antenna arrays[J]. Russian Journal of Nondestructive Testing, 2019, 55(7): 499-506. doi: 10.1134/S1061830919070040
    [12] 张海澜. 理论声学 [M]. 2版. 北京: 高等教育出版社, 2012.

    ZHANG H L. Theoretical acoustics[M]. 2nd ed. Beijing: Higher Education Press, 2012(in Chinese).
    [13] SCHMERR L W. Fundamentals of ultrasonic nondestructive evaluation[M]. Berlin: Springer, 1998: 121-137.
    [14] BREKHOVSKIKH L M, LIEBERMAN D, BEYER R T, et al. Waves in layered media[J]. Physics Today, 1962, 15(4): 70-74.
    [15] LI Y, ZHOU Z G, WANG J. Analysis of linear non-destructive testing and evaluation methods for thin-walled structure inspection using ultrasonic array[J]. Coatings, 2019, 9(2): 146. doi: 10.3390/coatings9020146
    [16] 徐娜, 李洋, 周正干, 等. FDTD方法的改进及在超声波声场计算中的应用[J]. 北京航空航天大学学报, 2013, 39(1): 78-82. doi: 10.13700/j.bh.1001-5965.2013.01.007

    XU N, LI Y, ZHOU Z G, et al. Improvement of FDTD method and its application in ultrasonic sound field calculation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1): 78-82(in Chinese). doi: 10.13700/j.bh.1001-5965.2013.01.007
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  32
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 录用日期:  2022-04-10
  • 网络出版日期:  2022-04-25
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答