留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

卷积自编码器在非定常可压缩流动降阶模型中的适用性

肖若冶 于剑 马正宵

肖若冶,于剑,马正宵. 卷积自编码器在非定常可压缩流动降阶模型中的适用性[J]. 北京航空航天大学学报,2023,49(12):3445-3455 doi: 10.13700/j.bh.1001-5965.2022.0085
引用本文: 肖若冶,于剑,马正宵. 卷积自编码器在非定常可压缩流动降阶模型中的适用性[J]. 北京航空航天大学学报,2023,49(12):3445-3455 doi: 10.13700/j.bh.1001-5965.2022.0085
XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0085
Citation: XIAO R Y,YU J,MA Z X. Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3445-3455 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0085

卷积自编码器在非定常可压缩流动降阶模型中的适用性

doi: 10.13700/j.bh.1001-5965.2022.0085
基金项目: 国家自然科学基金(11972064);航空工业气动院计算空气动力学重点实验室基金 (YL2022XFX0405)
详细信息
    通讯作者:

    E-mail:yuj@buaa.edu.cn

  • 中图分类号: V211.3

Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows

Funds: National Natural Science Foundation of China (11972064); Key Laboratory of Computational Aerodynamics, AVIC Aerodynamics Research Institute Foundation (YL2022XFX0405)
More Information
  • 摘要:

    为有效降低使用计算流体力学(CFD)方法的设计成本和周期,降阶模型(ROM)得到广泛关注。对于复杂的可压缩流动,使用本征正交分解(POD)等线性方法进行流场降维,需要大量模态才能保证流场重建的精度,采用非线性降维方法能够有效减少所需模态数。卷积自编码器(CAE)是一种由编码器和解码器组成的神经网络,能够实现数据降维和重构,可看作是POD方法的非线性拓展。采用CAE进行流场数据的非线性降维,同时使用长短期记忆(LSTM)神经网络进行流场状态的时间演化。对于不可压缩问题,使用自编码器和LSTM结合进行流场重构的方法已有较多研究,选择一维Sod激波管、Shu-Osher问题、二维黎曼问题和开尔文-亥姆霍兹不稳定性算例,测试该ROM对非定常可压缩流动的有效性,同时基于POD方法,在不同模态数下构造Sod激波管和黎曼问题的ROM作为对比。结果表明:对于非定常可压缩流动,CAE-LSTM方法能够在使用较少自由变量数的前提下获得较高的重构和预测精度。

     

  • 图 1  POD方法分解和重构流场的过程

    Figure 1.  Process of decomposition and reconstruction of flow field by POD method

    图 2  多层自编码器

    Figure 2.  A multi-layer autoencoder

    图 3  卷积的工作原理

    Figure 3.  Principle of convolution

    图 4  极大池化

    Figure 4.  Max pooling

    图 5  向上采样

    Figure 5.  Up sampling

    图 6  CAE-LSTM网络的结构

    Figure 6.  Structure of CAE-LSTM

    图 7  Sod激波管流场的CAE重构

    Figure 7.  Reconstruction of Sod tube by CAE

    图 8  Sod激波管流场的POD重构

    Figure 8.  Reconstruction of Sod tube by POD

    图 9  Sod激波管流场的重构平均相对误差

    Figure 9.  MRE of Sod tube reconstruction

    图 10  Sod激波管流场的CAE-LSTM预测

    Figure 10.  Prediction of Sod tube by CAE-LSTM

    图 11  Sod激波管流场的POD-LSTM预测

    Figure 11.  Prediction of Sod tube by POD-LSTM

    图 12  Sod激波管流场的预测平均相对误差

    Figure 12.  MRE of Sod tube prediction

    图 13  Shu-Osher问题的流场预测

    Figure 13.  Prediction of Shu-Osher by CAE-LSTM

    图 14  Shu-Osher问题的流场重构和预测平均相对误差

    Figure 14.  MRE of Shu-Osher reconstruction and prediction

    图 15  二维黎曼问题的重构流场

    Figure 15.  Reconstruction of 2D Riemann problem

    图 16  二维黎曼问题的流场重构平均相对误差

    Figure 16.  Reconstruction MRE of 2D Riemann problem

    图 17  二维黎曼问题的预测流场

    Figure 17.  Prediction of 2D Riemann problem

    图 18  二维黎曼问题的流场预测误差

    Figure 18.  Prediction MRE of 2D Riemann problem

    图 19  KH不稳定性问题流场的初始条件[31]

    Figure 19.  Initial condition of Kelvin–Helmholtz (KH) instability problem[31]

    图 20  KH不稳定性问题流场的CAE-LSTM网络预测

    Figure 20.  Prediction of KH instability problem by CAE-LSTM

    图 21  KH不稳定性问题的流场重构和预测平均相对误差

    Figure 21.  MRE of reconstruction and prediction of KH instability problem

  • [1] YU J A, YAN C, GUO M W. Non-intrusive reduced-order modeling for fluid problems: A brief review[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(16): 5896-5912. doi: 10.1177/0954410019890721
    [2] DOWELL E H, HALL K C, ROMANOWSKI M C. Eigenmode analysis in unsteady aerodynamics: Reduced order models[J]. Applied Mechanics Reviews, 1997, 50(6): 371-386. doi: 10.1115/1.3101718
    [3] SILVA W A. Identification of linear and nonlinear aerodynamic impulse responses using digital filter techniques[C]//Proceedings of the 22nd Atmospheric Flight Mechanics Conference. Reston: AIAA, 1997: 3712.
    [4] EIVAZI H, VEISI H, NADERI M H, et al. Deep neural networks for nonlinear model order reduction of unsteady flows[J]. Physics of Fluids, 2020, 32(10): 105104. doi: 10.1063/5.0020526
    [5] BENNER P, GUGERCIN S, WILLCOX K. A survey of projection-based model reduction methods for parametric dynamical systems[J]. SIAM Review, 2015, 57(4): 483-531. doi: 10.1137/130932715
    [6] 陈刚, 李跃明. 非定常流场降阶模型及其应用研究进展与展望[J]. 力学进展, 2011, 41(6): 686-701. doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009

    CHEN G, LI Y M. Advances and prospects of the reduced order model for unsteady flow and its application[J]. Advances in Mechanics, 2011, 41(6): 686-701(in Chinese). doi: 10.6052/1000-0992-2011-6-lxjzJ2011-009
    [7] 寇家庆. 非定常气动力建模与流场降阶方法研究[D]. 西安: 西北工业大学, 2018: 11.

    KOU J Q. Reduced-order modeling methods for unsteady aerodynamics and fluid flows[D]. Xi’an: Northwestern Polytechnical University, 2018: 11(in Chinese).
    [8] 寇家庆, 张伟伟. 动力学模态分解及其在流体力学中的应用[J]. 空气动力学学报, 2018, 36(2): 163-179.

    KOU J Q, ZHANG W W. Dynamic mode decomposition and its applications in fluid dynamics[J]. Acta Aerodynamica Sinica, 2018, 36(2): 163-179(in Chinese).
    [9] JIMENEZ L O, LANDGREBE D A. Supervised classification in high-dimensional space: Geometrical, statistical, and asymptotical properties of multivariate data[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 1998, 28(1): 39-54. doi: 10.1109/5326.661089
    [10] DEMERS D, COTTRELL G W. Non-linear dimensionality reduction[C]//Advances in Neural Information Processing Systems 5. New York: ACM, 1992: 580-587.
    [11] MAULIK R, LUSCH B, BALAPRAKASH P. Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders[J]. Physics of Fluids, 2021, 33(3): 037106. doi: 10.1063/5.0039986
    [12] EBDEN M. Gaussian: A quick introduction[EB/OL]. (2015-08-29)[2022-02-24]. https://arxiv.org/abs/1505.02965.
    [13] SUN G, WANG S Y. A review of the artificial neural network surrogate modeling in aerodynamic design[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(16): 5863-5872. doi: 10.1177/0954410019864485
    [14] YONDO R, ANDRÉS E, VALERO E. A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses[J]. Progress in Aerospace Sciences, 2018, 96: 23-61. doi: 10.1016/j.paerosci.2017.11.003
    [15] KUTZ J N. Deep learning in fluid dynamics[J]. Journal of Fluid Mechanics, 2017, 814: 1-4. doi: 10.1017/jfm.2016.803
    [16] 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3): 444-454.

    ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3): 444-454(in Chinese).
    [17] TOMPSON J, SCHLACHTER K, SPRECHMANN P, et al. Accelerating eulerian fluid simulation with convolutional networks[C]//Proceedings of the 34th International Conference on Machine Leavning. NewYork: ACM, 2017, 70: 3424-3433.
    [18] LING J, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807: 155-166. doi: 10.1017/jfm.2016.615
    [19] MIYANAWALA T P, JAIMAN R K. An efficient deep learning technique for the Navier-Stokes equations: Application to unsteady wake flow dynamics[EB/OL]. (2018-08-15)[2022-02-24]. https://arxiv.org/abs/1710.09099.
    [20] 尹明朗, 寇家庆, 张伟伟. 一种高泛化能力的神经网络气动力降阶模型[J]. 空气动力学学报, 2017, 35(2): 205-213.

    YIN M L, KOU J Q, ZHANG W W. A reduced-order aer ody-namic model with high generalization capability based on neural network[J]. Acta Aerodynamica Sinica, 2017, 35(2): 205-213(in Chinese).
    [21] 王怡星, 李东风, 陈刚. 一种基于流动特征的气动力深度神经网络降阶模型[C]//第十届全国流体力学学术会议. 北京: 中国力学学会, 2018: 358.

    WANG Y X, LI D F, CHEN G. A reduced order model of aerodynamic depth neural network based on flow characteristics[C]//The 10th National Conference on fluid mechanics. Beijing: CSTAM, 2018: 358(in Chinese).
    [22] 武频, 孙俊五, 封卫兵. 基于自编码器和LSTM的模型降阶方法[J]. 空气动力学学报, 2021, 39(1): 73-81.

    WU P, SUN J W, FENG W B. Reduced order model based on autoencoder and long short-term memory network[J]. Acta Aerodynamica Sinica, 2021, 39(1): 73-81(in Chinese).
    [23] SIROVICH L. Turbulence and the dynamics of coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561-590. doi: 10.1090/qam/910462
    [24] LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. doi: 10.1038/nature14539
    [25] HYVÄRINEN A, KÖSTER U. Complex cell pooling and the statistics of natural images[J]. Network:Computation in Neural Systems, 2007, 18(2): 81-100. doi: 10.1080/09548980701418942
    [26] ZEILER M D, FERGUS R. Stochastic pooling for regularization of deep convolutional neural networks[EB/OL]. (2013-01-16)[2022-02-24].https://arxiv.org/abs/1301.3557.
    [27] MATHIEU M, HENAFF M, LECUN Y. Fast training of convolutional networks through FFTs[EB/OL]. (2014-03-06)[2022-02-24].https://arxiv.org/abs/1312.5851.
    [28] 叶舒然, 张珍, 宋旭东, 等. 自动编码器在流场降阶中的应用[J]. 空气动力学学报, 2019, 37(3): 498-504.

    YE S R, ZHANG Z, SONG X D, et al. Applications of autoencoder in reduced-order modeling of flow field[J]. Acta Aerodynamica Sinica, 2019, 37(3): 498-504(in Chinese).
    [29] RAMACHANDRAN P, ZOPH B, LE Q V. Searching for activation functions[EB/OL]. (2017-10-27)[2022-02-24]. https://arxiv.org/abs/1710.05941.
    [30] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735
    [31] SCHWANDER L, RAY D, HESTHAVEN J S. Controlling oscillations in spectral methods by local artificial viscosity governed by neural networks[J]. Journal of Computational Physics, 2021, 431(1): 110144.
    [32] KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. (2017-01-30)[2022-02-24]. https://arxiv.org/abs/1412.6980.
  • 加载中
图(21)
计量
  • 文章访问数:  88
  • HTML全文浏览量:  23
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-06-06
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答