留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含区间分布参数的尾喷管调节机构可靠性分析

张政 王攀 周瀚渊

张政,王攀,周瀚渊. 含区间分布参数的尾喷管调节机构可靠性分析[J]. 北京航空航天大学学报,2023,49(12):3377-3385 doi: 10.13700/j.bh.1001-5965.2022.0089
引用本文: 张政,王攀,周瀚渊. 含区间分布参数的尾喷管调节机构可靠性分析[J]. 北京航空航天大学学报,2023,49(12):3377-3385 doi: 10.13700/j.bh.1001-5965.2022.0089
ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0089
Citation: ZHANG Z,WANG P,ZHOU H Y. Reliability analysis of nozzle adjustment mechanism with interval distribution parameters[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3377-3385 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0089

含区间分布参数的尾喷管调节机构可靠性分析

doi: 10.13700/j.bh.1001-5965.2022.0089
基金项目: 国家自然科学基金(51975473)
详细信息
    通讯作者:

    E-mail:panwang@nwpu.edu.cn

  • 中图分类号: V434.2;V431

Reliability analysis of nozzle adjustment mechanism with interval distribution parameters

Funds: National Natural Science Foundation of China (51975473)
More Information
  • 摘要:

    为提高尾喷管调节机构的可靠性分析效率,提出一种结合拒绝采样和主动学习Kriging代理模型的分析方法。在ADAMS中建立了某发动机尾喷管调节机构虚拟样机仿真模型,通过运动学分析对所建模型进行验证;考虑其输入变量含区间分布参数的情形,建立基于调节机构定位精度的极限状态函数;引入主动学习Kriging代理模型,在分布参数随机变化的情况下,通过拒绝采样方法来捕捉样本空间的变化,从而构建适用于整个样本空间内的Kriging代理模型。通过数值算例验证所提方法的可行性,并采用所提方法对调节机构失效概率的上下限进行了计算分析,为提高区间分布参数下的可靠性分析效率提供了一种新的思路。

     

  • 图 1  尾喷管调节机构模型示意图

    Figure 1.  Schematic diagram of model of nozzle adjustment mechanism

    图 2  调节机构虚拟样机模型

    Figure 2.  Adjustment mechanism virtual prototype model

    图 3  调节机构平面简化图

    Figure 3.  Simplified plan of adjustment mechanism

    图 4  调节机构t时刻状态

    Figure 4.  State of adjustment mechanism at time t

    图 5  鱼鳞片展开角度随时间变化对比

    Figure 5.  Comparison of fish scale expansion angle with time

    图 6  拒绝采样方法示意图

    Figure 6.  Schematic diagram of rejection sampling method

    图 7  调节机构可靠性分析流程

    Figure 7.  Adjustment mechanism reliability analysis process

    图 8  悬臂梁结构

    Figure 8.  Cantilever beam structure

    图 9  数值算例代理模型样本点更新过程

    Figure 9.  Update process of sample points of surrogate model of numerical example

    图 10  数值算例候选样本池大小随迭代次数的变化

    Figure 10.  Variation of size of candidate sample pool with number of iterations in numerical example

    图 11  调节机构代理模型样本点更新过程

    Figure 11.  Update process of sample points of surrogate model of adjustment mechanism

    图 12  候选样本池大小随迭代次数的变化

    Figure 12.  Variation of size of candidate sample pool with number of iterations in adjustment mechanism

    表  1  输入变量分布参数

    Table  1.   Input variable distribution parameters

    变量 销轴B半径X1/mm 销轴C半径X2/mm 销轴B处摩擦系数X3 销轴C处摩擦系数X4 阻力矩X5/(N·m)
    均值 [2.65, 2.75] [2.65, 2.75] [0.08, 0.12] [0.08, 0.12] [55.92, 60.92]
    标准差 0.05 0.05 0.005 0.005 1.120
    下载: 导出CSV

    表  2  悬臂梁问题随机变量分布参数

    Table  2.   Random variable distribution parameters for cantilever problem

    变量 单位载荷$ \omega $/(N·m−2) 梁长$L$/m 截面尺寸$b$/mm
    均值 [900,1100] [5,7] [220,280]
    标准差 100 0.9 37.5
    下载: 导出CSV

    表  3  数值算例可靠性分析结果

    Table  3.   Reliability analysis results of numerical example

    方法失效概率(下限)/10−4失效概率(下限)误差/%失效概率(上限)失效概率(上限)误差/%计算时间/s样本量候选样本池规模
    MCS4.20.2640
    AK-MCS4.711.900.26460.2273315+10731×105
    本文方法4 4.760.26430.1112415+8092528
    下载: 导出CSV

    表  4  调节机构可靠性分析结果

    Table  4.   Reliability analysis results of adjustment mechanism

    失效概率(下限)失效概率(上限)
    4×10−50.0158
    下载: 导出CSV
  • [1] 徐惊雷. 超燃冲压及TBCC组合循环发动机尾喷管设计方法研究进展[J]. 推进技术, 2018, 39(10): 2236-2251.

    XU J L. Research progress of nozzle design method for scramjet and turbine based combined cycle[J]. Journal of Propulsion Technology, 2018, 39(10): 2236-2251(in Chinese).
    [2] SLOAN B, WANG J, SPENCE S, et al. Aerodynamic performance of a bypass engine with fan nozzle exit area change by warped chevrons[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2010, 224(6): 731-743. doi: 10.1243/09544100JAERO529
    [3] ARIF I, MASUD J, SHAH S. Computational analysis of integrated engine exhaust nozzle on a supersonic fighter aircraft[J]. Journal of Applied Fluid Mechanics, 2018, 11(6): 1511-1520. doi: 10.29252/jafm.11.06.28989
    [4] 张春宜, 宋鲁凯, 费成巍, 等. 柔性机构动态可靠性分析的先进极值响应面方法[J]. 机械工程学报, 2017, 53(7): 47-54. doi: 10.3901/JME.2017.07.047

    ZHANG C Y, SONG L K, FEI C W, et al. Advanced extremum response surface method for dynamic reliability analysis on flexible mechanism[J]. Journal of Mechanical Engineering, 2017, 53(7): 47-54(in Chinese). doi: 10.3901/JME.2017.07.047
    [5] 刘胜利, 王兴东, 孔建益, 等. 多源不确定性下平面变胞机构运动可靠性分析[J]. 机械工程学报, 2021, 57(17): 64-75. doi: 10.3901/JME.2021.17.064

    LIU S L, WANG X D, KONG J Y, et al. Kinematic reliability analysis of planar metamorphic mechanism with multi-source uncertainties[J]. Journal of Mechanical Engineering, 2021, 57(17): 64-75(in Chinese). doi: 10.3901/JME.2021.17.064
    [6] 贾洁羽, 崔卫民, 张玉刚, 等. 飞机舱门锁机构多失效模式可靠性分析方法[J]. 航空工程进展, 2020, 11(4): 524-531.

    JIA J Y, CUI W M, ZHANG Y G, et al. Reliability analysis method of aircraft hatch lock mechanism with multi-failure modes[J]. Advances in Aeronautical Science and Engineering, 2020, 11(4): 524-531(in Chinese).
    [7] 游令非, 张建国, 翟浩, 等. 模糊-随机混合参数的机构运动可靠度计算方法[J]. 北京航空航天大学学报, 2019, 45(4): 714-721.

    YOU L F, ZHANG J G, ZHAI H, et al. Computation method on motional reliability of mechanism under mixed parameters with fuzziness and randomness[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 714-721(in Chinese).
    [8] 陈炎, 董萌. 民用飞机襟翼运动机构运动可靠性分析及优化设计[J]. 机械设计与制造工程, 2021, 50(6): 38-42.

    CHEN Y, DONG M. Movement reliability analysis and optimization of civil aircraft’s flap mechanism[J]. Machine Design and Manufacturing Engineering, 2021, 50(6): 38-42(in Chinese).
    [9] LING C Y, LU Z Z, ZHANG X B. An efficient method based on AK-MCS for estimating failure probability function[J]. Reliability Engineering & System Safety, 2020, 201: 106975.
    [10] WANG P, ZHANG Z, HUANG X Y, et al. An application of active learning Kriging for the failure probability and sensitivity functions of turbine disk with imprecise probability distributions[J]. Engineering With Computers, 2022, 38(4): 3417-3437. doi: 10.1007/s00366-021-01366-y
    [11] WANG W X, GAO H S, ZHOU C C, et al. Reliability analysis of motion mechanism under three types of hybrid uncertainties[J]. Mechanism and Machine Theory, 2018, 121: 769-784. doi: 10.1016/j.mechmachtheory.2017.12.010
    [12] HOFER E, KLOOS M, KRZYKACZ-HAUSMANN B, et al. An approximate epistemic uncertainty analysis approach in the presence of epistemic and aleatory uncertainties[J]. Reliability Engineering & System Safety, 2002, 77(3): 229-238.
    [13] BEER M, FERSON S, KREINOVICH V. Imprecise probabilities in engineering analyses[J]. Mechanical Systems and Signal Processing, 2013, 37(1-2): 4-29. doi: 10.1016/j.ymssp.2013.01.024
    [14] ZHANG J H, XIAO M, GAO L. An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation[J]. Reliability Engineering & System Safety, 2019, 188: 90-102.
    [15] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11): 3197-3225.

    HAN Z H. Kriging surrogate model and its application to design optimization: A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11): 3197-3225(in Chinese).
    [16] KOEHLER J R, OWEN A B. 9 computer experiments[J]. Handbook of Statistics, 1996, 13: 261-308.
    [17] LOPHAVEN S N, SONDERGAARD J, NIELSEN H B. DACE a MATLAB Kriging toolbox[EB/OL]. (2002-08-01)[2022-01-08]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.17.3530&rep=rep1&type=pdf.
    [18] 周长聪, 赵浩东, 常琦, 等. 飞机舱门泄压阀机构磨损可靠性与灵敏度分析[J]. 北京航空航天大学学报, 2021, 47(4): 690-697. doi: 10.13700/j.bh.1001-5965.2020.0024

    ZHOU C C, ZHAO H D, CHANG Q, et al. Reliability and sensitivity analysis of relief valve mechanism of aircraft door considering wear[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(4): 690-697(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0024
    [19] CHENG L, LU Z Z, ZHANG L G. Application of rejection sampling based methodology to variance based parametric sensitivity analysis[J]. Reliability Engineering & System Safety, 2015, 142: 9-18.
    [20] 程蕾, 张磊刚, 雷豹, 等. 一种平均矩独立重要性指标及其拒绝抽样方法[J]. 北京航空航天大学学报, 2019, 45(1): 66-73.

    CHENG L, ZHANG L G, LEI B, et al. An average moment-independent importance index and its rejection sampling method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(1): 66-73(in Chinese).
    [21] RIDLEY G, FORGET B. A simple method for rejection sampling efficiency improvement on SIMT architectures[J]. Statistics and Computing, 2021, 31(3): 1-11.
    [22] 李勇, 韩非非, 张昕喆, 等. 基于遗传算法-序列二次规划的涡扇发动机最低油耗性能寻优控制[J]. 推进技术, 2020, 41(7): 1638-1648.

    LI Y, HAN F F, ZHANG X Z, et al. Performance seeking control of turbofan engine minimum fuel consumption model based on GA-SQP[J]. Journal of Propulsion Technology, 2020, 41(7): 1638-1648(in Chinese).
    [23] MANSOORNEJAD B, MOSTOUFI N, JALALI-FARAHANI F. A hybrid GA-SQP optimization technique for determination of kinetic parameters of hydrogenation reactions[J]. Computers & Chemical Engineering, 2008, 32(7): 1447-1455.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  98
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-25
  • 录用日期:  2022-06-06
  • 网络出版日期:  2022-08-29
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答