留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于随机遮挡和多粒度特征融合的行人重识别

张楠 程德强 寇旗旗 马浩辉 钱建生

张楠,程德强,寇旗旗,等. 基于随机遮挡和多粒度特征融合的行人重识别[J]. 北京航空航天大学学报,2023,49(12):3511-3519 doi: 10.13700/j.bh.1001-5965.2022.0091
引用本文: 张楠,程德强,寇旗旗,等. 基于随机遮挡和多粒度特征融合的行人重识别[J]. 北京航空航天大学学报,2023,49(12):3511-3519 doi: 10.13700/j.bh.1001-5965.2022.0091
ZHANG N,CHENG D Q,KOU Q Q,et al. Person re-identification based on random occlusion and multi-granularity feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3511-3519 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0091
Citation: ZHANG N,CHENG D Q,KOU Q Q,et al. Person re-identification based on random occlusion and multi-granularity feature fusion[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3511-3519 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0091

基于随机遮挡和多粒度特征融合的行人重识别

doi: 10.13700/j.bh.1001-5965.2022.0091
基金项目: 国家自然科学基金(51774281)
详细信息
    通讯作者:

    E-mail:chengdq@cumt.edu.cn

  • 中图分类号: TP391.41;TP18

Person re-identification based on random occlusion and multi-granularity feature fusion

Funds: National Natural Science Foundation of China (51774281)
More Information
  • 摘要:

    针对行人重识别中存在遮挡及行人判别特征层次单调的问题,在IBN-Net50-a网络的基础上,提出了一种结合随机遮挡和多粒度特征融合的网络模型。通过对输入图像进行随机遮挡处理,模拟行人被遮挡的真实情景,以增强应对遮挡的鲁棒性;将网络分为全局分支、局部粗粒度互融分支和局部细粒度互融分支,提取全局显著性特征,同时补充局部多粒度深层特征,丰富行人判别特征的层次性;进一步挖掘局部多粒度特征间的相关性进行深度融合;联合标签平滑交叉熵损失和三元组损失训练网络。在3个标准公共数据集和1个遮挡数据集上,将所提方法与先进的行人重识别方法进行比较,实验结果表明:在Market1501、DukeMTMC-reID、CUHK03标准公共数据集上,所提方法的Rank-1分别达到了95.2%、89.2%、80.1%,在遮挡数据集Occluded-Duke上,所提方法的Rank-1和mAP分别达到了60.6%和51.6%,均优于对比方法,证实了方法的有效性。

     

  • 图 1  基于随机遮挡和多粒度特征融合的网络结构

    Figure 1.  Network structure based on random occlusion and multi-granularity feature fusion

    图 2  IBN-a结构

    Figure 2.  Structure of IBN-a

    图 3  局部信息互融模块

    Figure 3.  Local information mutual fusion module

    图 4  遮挡效果

    Figure 4.  Occlusion effect

    图 5  RO-MFF与MGN模型行人检索结果对比

    Figure 5.  Comparison of pedestrian retrieval results with MGN model

    表  1  不同方法在Market1501和DukeMTMC-reID数据集上的结果对比

    Table  1.   Comparison of results of different methods on   Market1501 and DukeMTMC-reID datasets %

    方法Rank-1mAP
    Market1501DukeMTMC-reIDMarket1501DukeMTMC-reID
    PCB+RPP[12]93.883.381.669.2
    Mancs[14]93.184.982.371.8
    VPM[15]93.083.680.872.6
    SVDNet[9]82.376.762.156.8
    MHN-6+
    IDE[28]
    93.687.583.675.2
    SGGNN[29]92.381.182.868.2
    MGN[17]95.788.786.978.4
    HPM[16]94.286.682.774.3
    DG-Net[30]94.886.686.074.8
    CASN+IDE[31]92.084.578.067.0
    SNR[32]94.484.484.772.9
    Top-DB-
    Net[33]
    94.987.585.873.5
    Self-supervised person[34]94.789.086.778.2
    FPO+GBS[35]93.482.1
    DCNN[36]90.281.082.778.0
    PCB-U+
    RPP[37]
    93.884.581.671.5
    本文方法95.289.287.379.2
    下载: 导出CSV

    表  2  不同方法在CUHK03数据集上的结果对比

    Table  2.   Comparison of results of different methods on CUHK03 dataset %

    方法Rank-1mAP
    CUHK03 DetectedLabeledCUHK03 DetectedLabeled
    Mancs[14]65.569.060.563.9
    HA-CNN[13]41.744.438.641.0
    PCB+RPP[12]62.856.7
    MGN[17]66.868.066.067.4
    HPM[16]63.957.5
    CASN+IDE[31]57.458.950.752.2
    MHN-6+IDE[28]67.069.761.265.1
    Auto-ReID[38]73.377.969.373.0
    Top-DB-Net[33]77.379.473.275.4
    Self-supervised
    person[34]
    70.472.765.867.8
    FPO+GBS[35]68.271.762.066.7
    DCNN[36]60.567.864.872.7
    PCB-U+RPP[37]62.856.7
    本文方法78.980.175.778.7
    下载: 导出CSV

    表  3  不同方法在Occluded-Duke数据集上的结果对比

    Table  3.   Comparison of results of different methods on Occluded-Duke datase %

    方法Rank-1mAP
    PCB[12]42.633.7
    DSR[39]40.830.4
    SFR[45]42.332
    Ad-Occ[46]44.532.2
    PGFA[27]51.437.3
    HOReID[40]55.143.8
    PSE[47]40.832.5
    MHSA[41]59.744.8
    SCSN[42]43.532.8
    AANet[44]42.631.3
    ABD-Net[43]44.734.9
    本文方法60.651.6
    下载: 导出CSV

    表  4  不同分支及模块消融实验结果

    Table  4.   Ablation experiments of different branches and modules %

    分支Rank-1mAP
    Market1501DukeMTMC-reIDMarket1501DukeMTMC-reID
    Branch188.480.571.262.0
    Branch292.884.678.169.9
    Branch391.586.878.372.6
    Branch1292.387.079.373.1
    Branch123
    (Baseline)
    92.287.280.474.6
    Branch123+随机遮挡94.288.885.878.0
    Branch123+随机遮挡+局部信息互融95.289.287.379.2
    下载: 导出CSV

    表  5  不同主干网络的性能比较

    Table  5.   Performance comparison of different backbone networks %

    主干网络Rank-1mAP
    Market1501DukeMTMC-
    reID
    Market1501DukeMTMC-
    reID
    ResNet5093.287.184.977.4
    IBN-Net50-a95.289.287.379.2
    下载: 导出CSV

    表  6  不同联合损失函数系数的结果对比

    Table  6.   Results comparison of different joint loss function coefficients

    $ \nu $$ \mu $Rank-1/%mAP/%
    Market1501DukeMTMC-reIDMarket1501DukeMTMC-reID
    1 0.594.289.386.579.0
    0.5194.087.885.077.1
    1194.588.987.078.8
    1294.388.686.678.7
    2195.289.287.379.2
    下载: 导出CSV
  • [1] LI J H, CHENG D Q, LIU R H, et al. Unsupervised person re-identification based on measurement axis[J]. IEEE Signal Processing Letters, 2021, 28: 379-383. doi: 10.1109/LSP.2021.3055116
    [2] 谢彭宇, 徐新. 基于多尺度联合学习的行人重识别[J]. 北京航空航天大学学报, 2021, 47(3): 613-622.

    XIE P Y, XU X. Multi-scale joint learning for person re-identification[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(3): 613-622(in Chinese).
    [3] LIAO S C, HU Y, ZHU X Y, et al. Person re-identification by local maximal occurrence representation and metric learning[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 2197-2206.
    [4] ZHAO R, OUYANG W L, WANG X G, et al. Person re-identification by salience matching[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2014: 2528-2535.
    [5] ZHAO R, OUYANG W L, WANG X G, et al. Unsupervised salience learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013: 3586-3593.
    [6] GE Y X, LI Z W, ZHAO H Y, et al. FD-GAN: Pose-guided feature distilling GAN for robust person re-identification[EB/OL]. (2018-12-12)[2022-02-13]. https://arxiv.org/abs/1810.02936v2.
    [7] FAN H H, ZHENG L A, YAN C G, et al. Unsupervised person re-identification: Clustering and fine-tuning[J]. ACM Transactions on Multimedia Computing Communications and Applications, 2018, 14(4): 1-18.
    [8] ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: Past, present and future[EB/OL]. (2016-10-10) [2022-02-27]. https://arxiv.org/abs/1610.02984v1.
    [9] SUN Y F, ZHENG L, DENG W J, et al. SVDNet for pedestrian retrieval[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 3820-3828.
    [10] SU C, LI J N, ZHANG S L, et al. Pose-driven deep convolutional model for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 3980-3989.
    [11] ZHAO H Y, TIAN M Q, SUN S Y, et al. Spindle Net: Person re-identification with human body region guided feature decomposition and fusion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2017: 907-915.
    [12] SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline)[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018, 11208: 501-518.
    [13] LI W, ZHU X T, GONG S G. Harmonious attention network for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2285-2294.
    [14] WANG C, ZHANG Q, HUANG C, et al. Mancs: A multi-task attentional network with curriculum sampling for person re-identification[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018, 11208: 384-400.
    [15] SUN Y F, XU Q, LI Y L, et al. Perceive where to focus: learning visibility-aware part-level features for partial person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 393-402.
    [16] FU Y, WEI Y C, ZHOU Y Q, et al. Horizontal pyramid matching for person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 8295-8302. doi: 10.1609/aaai.v33i01.33018295
    [17] WANG G S, YUAN Y F, CHEN X, et al. Learning discriminative features with multiple granularities for person re-identification[C]//Proceedings of the 26th ACM International Conference on Multimedia. New York: ACM, 2018: 274-282.
    [18] PAN X G, LUO P, SHI J P, et al. Two at once: Enhancing learning and generalization capacities via IBN-Net[C]//Proceedings of the European Conference on Computer. Vision Berlin: Springer, 2018, 11208: 484-500
    [19] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: The missing ingredient for fast stylization[EB/OL]. (2017-11-06)[2016-02-01].https://arxiv.org/abs/1607.08022v3
    [20] CHONG Y W, PENG C W, ZHANG C, et al. Learning domain invariant and specific representation for cross-domain person re-identification[J]. Applied Intelligence, 2021, 51(8): 5219-5232. doi: 10.1007/s10489-020-02107-2
    [21] PARK H, HAM B. Relation network for person re-identification[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 11839-11847.
    [22] HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re-identification[EB/OL]. (2017-11-21)[2022-02-01].https://arxiv.org/abs/1703.07737v4
    [23] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 2818-2826.
    [24] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: A benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2016: 1116-1124.
    [25] RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi-target, multi-camera tracking[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 17-35.
    [26] LI W, ZHAO R, XIAO T, et al. DeepReID: Deep filter pairing neural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2014: 152-159.
    [27] MIAO J X, WU Y, LIU P, et al. Pose-guided feature alignment for occluded person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2020: 542-551.
    [28] CHEN B H, DENG W H, HU J N, et al. Mixed high-order attention network for person re-identification[C]//Proceeeings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE Press, 2020: 371-381.
    [29] SHEN Y T, LI H S, YI S A, et al. Person re-identification with deep similarity-guided graph neural network[C]//Proceeeings of the European Conference on Computer Vision. Berlin: Springer, 2018, 11219: 508-526.
    [30] ZHENG Z D, YANG X D, YU Z D, et al. Joint discriminative and generative learning for person re-identification[C]//Proceeeings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 2133-2142.
    [31] ZHENG M, KARANAM S, WU Z Y, et al. Re-identification with consistent attentive siamese networks[C]//Proceeeings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 5728-5737.
    [32] JIN X, LAN C L, ZENG W J, et al. Style normalization and restitution for generalizable person re-identification[C]//Proceeeings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 3140-3149.
    [33] QUISPE R, PEDRINI H. Top-DB-Net: Top DropBlock for activation enhancement in person re-identification[C]//Proceedings of the IEEE International Conference on Pattern Recognition. Piscataway: IEEE Press, 2021: 2980-2987.
    [34] CHEN F, WANG N, TANG J, et al. A feature disentangling approach for person re-identification via self-supervised data augmentation[J]. Applied Soft Computing, 2021, 100: 106939. doi: 10.1016/j.asoc.2020.106939
    [35] TANG Y Z, YANG X, WANG N N, et al. Person re-identification with feature pyramid optimization and gradual background suppression[J]. Neural Networks, 2020, 124: 223-232. doi: 10.1016/j.neunet.2020.01.012
    [36] LI Y, JIANG X Y, HWANG J N. Effective person re-identification by self-attention model guided feature learning[J]. Knowledge-Based Systems, 2020, 187: 104832. doi: 10.1016/j.knosys.2019.07.003
    [37] SUN Y F, ZHENG L, LI Y L, et al. Learning part-based convolutional features for person re-identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(3): 902-917. doi: 10.1109/TPAMI.2019.2938523
    [38] QUAN R J, DONG X Y, WU Y, et al. Auto-ReID: Searching for a part-aware ConvNet for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2020: 3749-3758.
    [39] HE L X, LIANG J, LI H Q, et al. Deep spatial feature reconstruction for partial person re-identification: Alignment-free approach[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 7073-7082.
    [40] WANG G A, YANG S, LIU H Y, et al. High-order information matters: Learning relation and topology for occluded person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 6448-6457.
    [41] TAN H C, LIU X P, YIN B C, et al. MHSA-Net: Multi-head self-attention network for occluded person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 99: 1-15.
    [42] CHEN X S, FU C M, ZHAO Y, et al. Salience-guided cascaded suppression network for person re-identification[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 3297-3307.
    [43] CHEN T L, DING S J, XIE J Y, et al. ABD-Net: Attentive but diverse person re-identification[C]//Proceedings of the International Conference on Computer Vision. Piscataway: IEEE Press, 2020: 8350-8360.
    [44] TAY C P, ROY S, YAP K H, et al. AANet: Attribute attention network for person re-identifications[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2020: 7127-7136.
    [45] HE L X, SUN Z N, ZHU Y H, et al. Recognizing partial biometric patterns[EB/OL]. (2018-10-17)[2022-02-01]. https://arxiv.org/abs/1810.07399.
    [46] CHANG X B, HOSPEDALES T M, XIANG T, et al. Multi-level factorisation net for person re-identification[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 2109-2118.
    [47] SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose-sensitive embedding for person re-identification with expanded cross neighborhood re-ranking[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 420-429.
  • 加载中
图(5) / 表(6)
计量
  • 文章访问数:  2050
  • HTML全文浏览量:  32
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-04-11
  • 整期出版日期:  2023-12-31

目录

    /

    返回文章
    返回
    常见问答