留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑样本不平衡的X光安检图像违禁品分类方法

冯霞 魏新坤 刘才华 赫鑫宇

冯霞,魏新坤,刘才华,等. 考虑样本不平衡的X光安检图像违禁品分类方法[J]. 北京航空航天大学学报,2023,49(12):3215-3221 doi: 10.13700/j.bh.1001-5965.2022.0095
引用本文: 冯霞,魏新坤,刘才华,等. 考虑样本不平衡的X光安检图像违禁品分类方法[J]. 北京航空航天大学学报,2023,49(12):3215-3221 doi: 10.13700/j.bh.1001-5965.2022.0095
FENG X,WEI X K,LIU C H,et al. Contraband classification method for X-ray security images considering sample imbalance[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3215-3221 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0095
Citation: FENG X,WEI X K,LIU C H,et al. Contraband classification method for X-ray security images considering sample imbalance[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3215-3221 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0095

考虑样本不平衡的X光安检图像违禁品分类方法

doi: 10.13700/j.bh.1001-5965.2022.0095
基金项目: 天津市教委科研计划(2021KJ037);中央高校基本科研业务费专项资金(3122021052)
详细信息
    通讯作者:

    E-mail:chliu@cauc.edu.cn

  • 中图分类号: TP391.4

Contraband classification method for X-ray security images considering sample imbalance

Funds: Scientific Research Project of Tianjin Educational Committee (2021KJ037); The Fundamental Research Funds for the Central Universities (3122021052)
More Information
  • 摘要:

    X光安检图像违禁品分类被广泛应用于协助维护航空和运输安全。针对X光安检图像中违禁品尺度不一、存在困难样本及旅客行李安检固有的正负样本不均衡等问题,提出一种端到端的考虑样本不平衡的X光安检图像违禁品分类方法。采用多尺度特征提取网络捕获尺度不一的多类型违禁品特征,通过特征融合模块提升模型对图像边缘和纹理特征的表达能力,基于代价敏感思想设计损失函数,解决数据集不平衡问题,并提高困难样本分类精准度。在公开数据集SIXray上构建的子集实验结果表明:所提方法相较于端到端分类模型,平均AP指标值提升了4.5%,特别是对剪刀等难分类样本,AP指标值都有显著的提升效果。

     

  • 图 1  模型结构

    Figure 1.  Model structure

    图 2  多尺度特征提取网络

    Figure 2.  Multiscale feature extraction network

    图 3  违禁品AP指标与代价敏感参数的关系

    Figure 3.  Relationship between AP index and cost sensitive parameters of contraband

    图 4  违禁品AP指标与正负样本权重因子的关系

    Figure 4.  Relationship between AP index and positive and negative sample weight factor of contraband

    图 5  违禁品AP指标与难分类样本权重因子的关系

    Figure 5.  Relationship between AP index and difficult-to-score sample weight factor of contraband

    表  1  不同模型分类性能对比实验结果

    Table  1.   Comparative experiment results of classification performance of different models %

    方法AP指标值平均AP指标值
    扳手钳子剪刀
    ResNet10184.287.769.385.360.477.4
    Inception-V383.890.168.184.558.777.0
    RFBNet72.990.564.977.368.674.8
    ACMNet80.291.583.685.980.384.3
    Cascade R-CNN80.487.482.486.486.384.6
    ResNet101+CHR87.285.571.288.364.779.4
    本文90.586.580.597.389.488.8
    下载: 导出CSV

    表  2  消融实验结果

    Table  2.   Ablation experiment results

    骨干
    网络
    特征融合
    模块
    多尺度残差
    学习模块
    FCB Loss平均AP
    指标值/%
    77.4
    79.4
    83.3
    88.8
    下载: 导出CSV
  • [1] HEITZ G, CHECHIK G. Object separation in X-ray image sets[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2010: 2093-2100.
    [2] MERY D. Automated detection in complex objects using a tracking algorithm in multiple X-ray views[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2011: 12173892.
    [3] HASSAN T, WERGHI N. Trainable structure tensors for autonomous baggage threat detection under extreme occlusion[C]//Proceedings of the Asian Conference on Computer Vision. Berlin: Springer, 2020: 257-273.
    [4] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1-9.
    [5] AKÇAY S, KUNDEGORSK I M E, DEVEREUX M, et al. Transfer learning using convolutional neural networks for object classification within X-ray baggage security imagery[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2016: 1057-1061.
    [6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 779-788.
    [7] 张友康, 苏志刚, 张海刚, 等. X光安检图像多尺度违禁品检测[J]. 信号处理, 2020, 36(7): 1096-1106. doi: 10.16798/j.issn.1003-0530.2020.07.008

    ZHANG Y K, SU Z G, ZHANG H G, et al. X-ray security images multiscale contraband detection[J]. Signal Processing, 2020, 36(7): 1096-1106(in Chinese). doi: 10.16798/j.issn.1003-0530.2020.07.008
    [8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2016: 21-37.
    [9] MIAO C, XIE L, WAN F, et al. SIXray: A large-scale security in spection X-ray benchmark for prohibited item discovery in overlapping images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 2114-2123.
    [10] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [11] WEBB T W, BHOWMIK N, GAUS Y F A, et al. Operationalizing convolutional neural network architectures for prohibited object detection in X-ray imagery[C]//Proceedings of the IEEE International Conference on Machine Learning and Applications. Piscataway: IEEE Press, 2021: 610-615.
    [12] CAI Z, VASCONCELOS N. Cascade R-CNN: High quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498.
    [13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE Press, 2017: 2999-3007.
    [14] 闫明松, 周志华. 代价敏感分类算法的实验比较[J]. 模式识别与人工智能, 2005, 18(5): 8.

    YAN M S, ZHOU Z H. An empirical comparative study of cost-sensitive classification algorithms[J]. Pattern Recognition and Artificial Intelligence, 2005, 18(5): 8(in Chinese).
    [15] GAO S, CHENG M M, ZHAO K, et al. Res2Net: A new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(2): 652-662. doi: 10.1109/TPAMI.2019.2938758
    [16] CUI Y, JIA M, LIN T Y, et al. Class-balanced loss based on effective number of samples[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 19262778.
    [17] EVERINGHAM M, ESLAMI S, VAN GOOL L, et al. The PASCAL visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136. doi: 10.1007/s11263-014-0733-5
    [18] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 2818-2826.
    [19] LIU S, HUANG D, WANG Y H. Receptive field block net for accurate and fast object detection[C]∥Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2018: 404-419.
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1548
  • HTML全文浏览量:  84
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 录用日期:  2022-05-29
  • 网络出版日期:  2022-08-22
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答