留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于耗氧惰化技术的飞机燃油箱热模型

刘冠男 王立群 王悦 许扬 王洋洋 冯诗愚 范菊莉

刘冠男,王立群,王悦,等. 基于耗氧惰化技术的飞机燃油箱热模型[J]. 北京航空航天大学学报,2023,49(12):3520-3527 doi: 10.13700/j.bh.1001-5965.2022.0097
引用本文: 刘冠男,王立群,王悦,等. 基于耗氧惰化技术的飞机燃油箱热模型[J]. 北京航空航天大学学报,2023,49(12):3520-3527 doi: 10.13700/j.bh.1001-5965.2022.0097
LIU G N,WANG L Q,WANG Y,et al. Thermal model of aircraft fuel tank based on oxygen consumption inerting technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3520-3527 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0097
Citation: LIU G N,WANG L Q,WANG Y,et al. Thermal model of aircraft fuel tank based on oxygen consumption inerting technology[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3520-3527 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0097

基于耗氧惰化技术的飞机燃油箱热模型

doi: 10.13700/j.bh.1001-5965.2022.0097
基金项目: 国家自然科学基金委员会-中国民用航空局民航联合研究基金(U1933121)
详细信息
    通讯作者:

    E-mail:fjl@nuaa.edu.cn

  • 中图分类号: V228;TQ021.4

Thermal model of aircraft fuel tank based on oxygen consumption inerting technology

Funds: National Natural Science Foundation of China-Civil Aviation Administration of China Joint Research Fund (U1933121)
More Information
  • 摘要:

    温度是燃油箱耗氧惰化系统适航符合性验证过程中重要指标。基于MATLAB Simulink软件,建立了飞机燃油箱耗氧型惰化系统油箱部件的传质传热模型,并验证其可靠性。在此基础上,分析了惰化系统抽气流量和出口温度对飞机燃油箱气相空间节点温度和燃油节点温度的影响。结果表明:所建立的飞机燃油箱传质传热模型具有较高的可靠性;随着惰化系统抽气流量的增加和惰化系统出口温度的升高,气相空间节点温度随之升高但对燃油节点温度影响不明显。

     

  • 图 1  耗氧型惰化系统流程示意图

    Figure 1.  Flow diagram of oxygen-consuming inerting system

    图 2  机翼燃油箱基元模块示意图

    Figure 2.  Schematic diagram of wing fuel tank primitive module

    图 3  耗氧惰化飞机燃油箱热模型研究流程

    Figure 3.  Flow chart of thermal model of aircraft fuel tank for oxygen-consuming inerting

    图 4  某飞机隔舱简化示意图

    Figure 4.  Simplified schematic diagram of an aircraft partition

    图 5  某飞机飞行包线及马赫数

    Figure 5.  Flight envelope and mach number of an aircraft

    图 6  基于Simulink软件的燃油箱传质传热模型图

    注:$T_f $为燃油温度;$T_g $为气体温度;$T_r $为壁面恢复温度。

    Figure 6.  Model diagram of mass and heat transfer of fuel tank based on Simulink software

    图 7  机翼燃油箱各节点温度随时间变化

    Figure 7.  Temperature of each node of wing fuel tank varies with time

    图 8  中央燃油箱各节点温度随时间变化

    Figure 8.  Temperature of each node of central fuel tank varies with time

    图 9  气相空间节点温度随耗氧型惰化系统抽气流量的变化

    Figure 9.  Variation of gas phase space node temperature with exhaust flow rate of oxygen-consuming inerting system

    图 10  燃油节点温度随耗氧型惰化系统抽气流量的变化

    Figure 10.  Variation of fuel node temperature with exhaust flow rate of oxygen-consuming inerting system

    图 11  气相空间节点温度随耗氧型惰化系统出口温度的变化

    Figure 11.  Variation of gas phase space node temperature with outlet temperature of oxygen-consuming inerting system

    图 12  燃油节点温度随耗氧型惰化系统出口温度的变化

    Figure 12.  Variation of fuel node temperature with outlet temperature of oxygen-consuming inerting system

  • [1] LANGTON R, CLARK C, HEWITT M, et al. Aircraft fuel systems [M]. New York: John Wiley and Sons, 2010: 225-237.
    [2] Federal Aviation Administration. Fuel tank flammability minimization: 25.981-2A[S]. Washington, D. C.: Federal Register, 2008.
    [3] Federal Aviation Administration. Transport airplane fuel tank system design review, flammability reduction, and maintenance and inspection requirements: 21-78, 25-102[S]. Washington, D. C.: Federal Register, 2005: 13.
    [4] Federal Aviation Administration. Reduction of fuel tank system flammability in transport category airplanes: 25-125[S]. Washington, D. C.: FederalRegister, 2008: 14-15.
    [5] GUPTA A. Fuel tank flammability reduction and inerting system and methods thereof: US9016078[P]. 2015-04-28.
    [6] DOMAN D B. Fuel flow topology and control for extending aircraft thermal endurance[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(1): 35-50. doi: 10.2514/1.T5142
    [7] 张斌. 民用飞机燃油箱系统热模型分析研究[J]. 民用飞机设计与研究, 2013(1): 23-26.

    ZHANG B. Research on the thermal model analysis of civil aircraft fuel tank system[J]. Civil Aircarft Design & Research, 2013(1): 23-26(in Chinese).
    [8] 郭军亮. 民用飞机燃油箱热特性数值仿真[J]. 航空计算技术, 2013, 43(1): 65-68.

    GUO J L. Numerical simulation on fuel tank thermal characters for civil aircraft[J]. Aeronautical Computing Technique, 2013, 43(1): 65-68(in Chinese).
    [9] 吕亚国, 任国哲, 刘振侠, 等. 飞机燃油箱热分析研究[J]. 推进技术, 2015, 36(1): 61-67. doi: 10.13675/j.cnki.tjjs.2015.01.009

    LV Y G, REN G Z, LIU Z X, et al. Thermal analysis of fuel tank for aircraft[J]. Journal of Propulsion Technology, 2015, 36(1): 61-67(in Chinese). doi: 10.13675/j.cnki.tjjs.2015.01.009
    [10] 彭孝天, 冯诗愚, 任童, 等. 飞行包线下燃油箱耗氧型惰化系统性能研究[J]. 北京航空航天大学学报, 2021, 47(8): 1565-1570.

    PENG X T, FENG S Y, REN T, et al. Performance of oxygen-consuming catalytic inerting system of fuel tank under flight envelope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1565-1570(in Chinese).
    [11] 刘夙春, 邱献双. 一种新型的飞机油箱催化惰化系统[J]. 航空科学技术, 2011, 22(4): 27-29.

    LIU S C, QIU X S. A new fuel tank catalytically inerting system[J]. Aeronautical Science & Technology, 2011, 22(4): 27-29(in Chinese).
    [12] 谢辉辉, 冯诗愚, 彭孝天, 等. 耗氧型惰化系统反应器性能理论研究[J]. 北京航空航天大学学报, 2019, 45(11): 2312-2319.

    XIE H H, FENG S Y, PENG X T, et al. Theoretical of reactor performance in oxygen consumption based inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2312-2319(in Chinese).
    [13] JOHNSON R W, ZAKI R, YATES S F. Advanced carbon dioxide fuel tank inerting system: US 7628965[P]. 2009-12-08.
    [14] 陶文铨. 传热学[M]. 5版. 北京: 高等教育出版社, 2019.

    TAO W Q. Heat transfer[M]. 5th ed. Beijing: Higher Education Press, 2019 (in Chinese).
    [15] 康振烨, 刘振侠, 任国哲, 等. 基于MATLAB/Simulink的飞机燃油箱内燃油温度仿真计算[J]. 推进技术, 2014, 35(1): 62-69.

    KANG Z Y, LIU Z X, REN G Z, et al. Simulation and calculation of fuel temperature in aircraft fuel tank based on MATLAB/Simulink[J]. Journal of Propulsion Technology, 2014, 35(1): 62-69(in Chinese).
    [16] 王晨臣, 潘俊, 王洋洋, 等. 抽吸气流量对催化惰化系统性能影响[J]. 北京航空航天大学学报, 2022, 48(7): 1183-1189.

    WANG C C, PAN J, WAMG Y Y, et al. Effect of suction flow rate on performance of catalytic inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1183-1189(in Chinese).
  • 加载中
图(12)
计量
  • 文章访问数:  196
  • HTML全文浏览量:  80
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 录用日期:  2022-08-21
  • 网络出版日期:  2022-09-05
  • 整期出版日期:  2023-12-31

目录

    /

    返回文章
    返回
    常见问答