留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

主动扭转旋翼振动载荷减缓控制优化

张啸迟 万志强 严德

张啸迟,万志强,严德. 主动扭转旋翼振动载荷减缓控制优化[J]. 北京航空航天大学学报,2023,49(12):3397-3408 doi: 10.13700/j.bh.1001-5965.2022.0105
引用本文: 张啸迟,万志强,严德. 主动扭转旋翼振动载荷减缓控制优化[J]. 北京航空航天大学学报,2023,49(12):3397-3408 doi: 10.13700/j.bh.1001-5965.2022.0105
ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0105
Citation: ZHANG X C,WAN Z Q,YAN D. Optimal active twist control for rotor vibration reduction[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3397-3408 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0105

主动扭转旋翼振动载荷减缓控制优化

doi: 10.13700/j.bh.1001-5965.2022.0105
详细信息
    通讯作者:

    E-mail:yande@buaa.edu.cn

  • 中图分类号: V275+.1

Optimal active twist control for rotor vibration reduction

More Information
  • 摘要:

    为降低旋翼前飞状态的桨毂振动载荷水平,应用主动扭转旋翼技术,开展最优控制方案研究。建立基于中等变形梁理论的旋翼气动弹性动力学模型,以预测稳态飞行的桨毂振动载荷。使用UH-60A直升机旋翼算例验证所建模型准确性并作为研究基准。通过谐波相位及幅值变参分析,研究单谐波扭转控制对振动载荷的影响。构建基于遗传算法的主动扭转旋翼控制参数优化框架,开展展向一致多谐波扭转控制参数优化与分段多谐波扭转控制方案优化。结果表明:优化的多谐波扭转控制相比单谐波主动扭转控制可起到更好的桨毂振动载荷减缓效果。而以桨叶中点为分段点的最优2段扭转控制方案,通过对内外段桨叶施加不同的扭转控制规律,进一步降低了六方向的振动载荷水平。

     

  • 图 1  桨叶坐标系

    Figure 1.  Reference frames for blade

    图 2  用于配平分析的全机受力情况

    Figure 2.  Forces and moments for trim solution

    图 3  UH-60A直升机桨叶预扭角分布

    Figure 3.  Pre-twist distribution of UH-60A blade

    图 4  UH-60A直升机桨叶翼型分布

    Figure 4.  Layout of SC1095 and SC1094R8 airfoils on UH-60A blade

    图 5  桨叶挥舞弯矩验证

    Figure 5.  Validation of blade flap-bending moment

    图 6  配平参数验证

    Figure 6.  Validation of trim parameter

    图 7  旋翼功率系数验证

    Figure 7.  Validation of rotor power coefficient

    图 8  主动扭转旋翼示意图

    Figure 8.  Schematic diagram of active twist rotor

    图 9  1Ω扭转控制在不同相位角下所获得的振动载荷降低率

    Figure 9.  Effects of 1Ω torsional control obtains vibration load reduction rate at different phase angles

    图 10  2Ω扭转控制在不同相位角下所获得的振动载荷降低率

    Figure 10.  Effects of 2Ω torsional control obtains vibration load reduction rate at different phase angles

    图 11  3Ω扭转控制在不同相位角下所获得的振动载荷降低率

    Figure 11.  Effects of 3Ω torsional control obtains vibration load reduction rate at different phase angles

    图 12  4Ω扭转控制在不同相位角下所获得的振动载荷降低率

    Figure 12.  Effects of 4Ω torsional control obtains vibration load reduction rate at different phase angles

    图 13  5Ω扭转控制在不同相位角下所获得的振动载荷降低率

    Figure 13.  Effects of 5Ω torsional control obtains vibration load reduction rate at different phase angles

    图 14  1Ω扭转控制在不同扭转率幅值下所获得的振动载荷降低率

    Figure 14.  Effects of 1Ω torsional control obtains vibration load reduction rate at different torsion rate amplitudes

    图 15  2Ω扭转控制在不同扭转率幅值下所获得的振动载荷降低率

    Figure 15.  Effects of 2Ω torsional control obtains vibration load reduction rate at different torsion rate amplitudes

    图 16  3Ω扭转控制在不同扭转率幅值下所获得的振动载荷降低率

    Figure 16.  Effects of 3Ω torsional control obtains vibration load reduction rate at different torsion rate amplitudes

    图 17  4Ω扭转控制在不同扭转率幅值下所获得的振动载荷降低率

    Figure 17.  Effects of 4Ω torsional control obtains vibration load reduction rate at different torsion rate amplitudes

    图 18  5Ω扭转控制在不同扭转率幅值下所获得的振动载荷降低率

    Figure 18.  Effects of 5Ω torsional control obtains vibration load reduction rate at different torsion rate amplitudes

    图 19  0Ω扭转控制在不同扭转率幅值下所获得的振动载荷降低率

    Figure 19.  Effects of 0Ω torsional control obtains vibration load reduction rate at different torsion rate amplitudes

    图 20  不同谐波幅值可获得的振动载荷指数降低率

    Figure 20.  Effects of harmonic amplitude on vibration Index reduction

    图 21  主动扭转旋翼控制参数优化框架

    Figure 21.  Optimization framework for active twist rotor control parameters

    图 22  最优展向一致多谐波扭转控制的谐波分量的幅值

    Figure 22.  Amplitudes of harmonic components for optimal multi-harmonic twist control

    图 23  最优多谐波控制和最优$ 2\varOmega $控制的波形

    Figure 23.  Waveform of optimized multi-harmonic twist control and optimized 2Ω twist control

    图 24  分段扭转控制示意图

    Figure 24.  Schematic diagram of segment twist control

    图 25  最优2段控制的波形

    Figure 25.  Waveform of optimized 2-seg twist control

    图 26  最优2段多谐波控制的谐波分量的幅值

    Figure 26.  Amplitudes of harmonic components for optimal-2-sey twist control

    图 27  六方向振动载荷降低率

    Figure 27.  Vibration reduction using active twist control approaches

    图 28  最优3段控制的波形

    Figure 28.  Waveform of optimized 3-seg twist control

    图 29  3种主动扭转控制的振动载荷指数降低率

    Figure 29.  Reduction of vibration index using three active twist control approaches

    表  1  UH-60A直升机旋翼主要参数

    Table  1.   Rotor main parameters of UH-60A helicopter

    参数数值
    旋翼半径/m8.1788
    桨叶弦长/m0.5273
    挥舞摆振铰外伸量/m0.381
    桨叶线密度/(kg·m−1)13.92
    旋翼转速/(rad·s−1)27.0
    桨叶片数4
    下载: 导出CSV
  • [1] FRIEDMANN P P, MILLOTT T A. Vibration reduction in rotorcraft using active control - A comparison of various approaches[J]. Journal of Guidance, Control, and Dynamics, 1995, 18(4): 664-673. doi: 10.2514/3.21445
    [2] CH K. Active rotor control for helicopters: motivation and survey on higher harmonic control[J]. CEAS Aeronautical Journal, 2011, 1(1): 3-22.
    [3] MCHUGH F J, SHAW J. Helicopter vibration reduction with higher harmonic blade pitch[J]. Journal of the American Helicopter Society, 1978, 23(4): 26-35. doi: 10.4050/JAHS.23.26
    [4] HAM N D. Individual-blade-control research in the MIT VTOL Technology Laboratory: NASA-CR-177121 [R]. Washington, D. C.: Langley Aeronautical Laboratory, 1986.
    [5] 徐海, 王华明, 杨仁国. 独立桨叶高阶谐波变距对旋翼垂向载荷的影响分析[J]. 南京航空航天大学学报, 2016, 48(2): 200-204. doi: 10.16356/j.1005-2615.2016.02.008

    XU H, WANG H M, YANG R G. Analysis on effect of individual high harmonic blade pitch on vertical hub load[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2016, 48(2): 200-204(in Chinese). doi: 10.16356/j.1005-2615.2016.02.008
    [6] FRIEDMANN P P. On-blade control of rotor vibration, noise, and performance: Just around the corner? The 33rd Alexander nikolsky honorary lecture[J]. Journal of the American Helicopter Society, 2014, 59(4): 1-37.
    [7] CHEN P C, CHOPRA I. Wind tunnel test of a smart rotor model with individual blade twist control[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(5): 414-425. doi: 10.1177/1045389X9700800504
    [8] MILLOTT T, FRIEDMANN P. Vibration reduction in helicopter rotors using an active control surface located on the blade[C]//Proceedings of the 33rd Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1992.
    [9] VISWAMURTHY S R, GANGULI R. An optimization approach to vibration reduction in helicopter rotors with multiple active trailing edge flaps[J]. Aerospace Science and Technology, 2004, 8(3): 185-194. doi: 10.1016/j.ast.2003.10.003
    [10] YEO H, LIM J W. Application of a slotted airfoil for UH60A helicopter performance: AD-A480499[R]. Moffett Field: NASA Ames Research Center, 2002.
    [11] KOMP D, KUMAR S, HAJEK M, et al. Effect of active camber morphing on rotor performance and control loads[J]. Aerospace Science and Technology, 2021, 108: 106311. doi: 10.1016/j.ast.2020.106311
    [12] CHEN P C, CHOPRA I. Induced strain actuation of composite beams and rotor blades with embedded piezoceramic elements[J]. Smart Materials & Structures, 1996, 5(1): 35.
    [13] WILBUR M L, MIRICK P H, YEAGER W T, et al. Vibratory loads reduction testing of the NASA/Army/MIT active twist rotor[J]. Journal of the American Helicopter Society, 2002, 47(2): 123-133. doi: 10.4050/JAHS.47.123
    [14] SHIN S J, CESNIK C E S, HALL S R. Closed-loop control test of the NASA/Army/MIT active twist rotor for vibration reduction[J]. Journal of the American Helicopter Society, 2005, 50(2): 178-194. doi: 10.4050/1.3092854
    [15] YOU Y H, JUNG S N, KIM C J. Optimal deployment schedule of an active twist rotor for performance enhancement and vibration reduction in high-speed flights[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1427-1440. doi: 10.1016/j.cja.2017.04.017
    [16] 张宇杭, 韩东, 万浩云. 桨叶分段线性扭转对旋翼性能的提升[J]. 航空学报, 2022, 43(5): 225264.

    ZHANG Y H, HAN D, WAN H Y. Rotor performance improvement by blade piecewise linear twist[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(5): 225264(in Chinese).
    [17] ZHANG X C, WAN Z Q, YAN D. Optimal segment control of active twist rotor for power reduction in forward flight[J]. Applied Sciences, 2021, 11(3): 1041. doi: 10.3390/app11031041
    [18] HODGES D H, DOWELL E H. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades: NASA-TN-d-7818[R]. Moffett Field : NASA Ames Research Center, 1975.
    [19] PETERS D A, HAQUANG N. Technical note: Dynamic inflow for practical applications[J]. Journal of the American Helicopter Society, 1988, 33(4): 64-68. doi: 10.4050/JAHS.33.64
    [20] YEO H, POTSDAM M. Rotor structural loads analysis using coupled computational fluid dynamics/computational structural dynamics[J]. Journal of Aircraft, 2016, 53(1): 87-105. doi: 10.2514/1.C033194
    [21] YEO H, BOUSMAN W G, JOHNSON W. Performance analysis of a utility helicopter with standard and advanced rotors[J]. Journal of the American Helicopter Society, 2004, 49(3): 250-270. doi: 10.4050/JAHS.49.250
    [22] KOVALOVS A, BARKANOV E, RUCHEVSKIS S, et al. Optimisation methodology of a full-scale active twist rotor blade[J]. Procedia Engineering, 2017, 178: 85-95. doi: 10.1016/j.proeng.2017.01.067
  • 加载中
图(29) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  7
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 录用日期:  2022-03-25
  • 网络出版日期:  2022-04-01
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答