留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大直径整流罩运载火箭选型抖振试验研究

王国辉 闫指江 季辰 唐伟 魏远明

王国辉,闫指江,季辰,等. 大直径整流罩运载火箭选型抖振试验研究[J]. 北京航空航天大学学报,2023,49(12):3230-3236 doi: 10.13700/j.bh.1001-5965.2022.0106
引用本文: 王国辉,闫指江,季辰,等. 大直径整流罩运载火箭选型抖振试验研究[J]. 北京航空航天大学学报,2023,49(12):3230-3236 doi: 10.13700/j.bh.1001-5965.2022.0106
WANG G H,YAN Z J,JI C,et al. Study on buffeting test of large diameter fairing launch vehicles selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3230-3236 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0106
Citation: WANG G H,YAN Z J,JI C,et al. Study on buffeting test of large diameter fairing launch vehicles selection[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3230-3236 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0106

大直径整流罩运载火箭选型抖振试验研究

doi: 10.13700/j.bh.1001-5965.2022.0106
基金项目: 国家自然科学基金(11872128)
详细信息
    通讯作者:

    E-mail:bryan0212@163.com

  • 中图分类号: V434.14

Study on buffeting test of large diameter fairing launch vehicles selection

Funds: National Natural Science Foundation of China (11872128)
More Information
  • 摘要:

    运载火箭在研制初期会根据卫星的包络需求提出整流罩的包络尺寸,进而提出火箭的初步构型设计。为了预示火箭设计构型的抖振风险,需针对火箭具体的外形尺寸、箭体频率、刚度数据开展跨声速抖振试验研究的相关工作。采用全弹性模型的抖振试验技术,以某型火箭3种5 m级直径整流罩构型为研究目标,通过开展2个方向的抖振试验,采用特征系统实现算法,评估3种火箭构型的抖振风险。研究结果表明:5.2 m直径整流罩+3.35 m直径三级构型一阶弹性模型对来流的响应时间短、响应幅值低,一阶和二阶弹性模型的气动阻尼值均大于零,可作为中国未来中型运载火箭大直径整流罩构型的外形设计方案。

     

  • 图 1  3种5 m级直径整流罩运载火箭构型的外形对比

    Figure 1.  Shape comparison of three launch vehicle configurations with five meters diameter fairing

    图 2  运载火箭外形参数示意图

    Figure 2.  Schematic diagram of shape parameter of launch vehicle

    图 3  运载火箭梁-质量模型[1]

    Figure 3.  Beam-mass model of launch vehicle[1]

    图 4  5.2 m+3.0 m构型真实箭体缩比后与弹性模型的振型对比

    Figure 4.  Comparison of vibration patterns between scaled real launch vehicle with 5.2 m+3.0 m configuration and elastic model

    图 5  激振及应变测量系统示意图

    Figure 5.  Schematic diagram of vibration and strain measurement system

    图 6  5.2 m+3.0 m构型的一阶和二阶弹性模型气动阻尼

    Figure 6.  Pneumatic damping of first-order and second-order elastic model of 5.2 m+3.0 m configuration

    图 7  4.8 m+3.0 m构型的一阶和二阶弹性模型气动阻尼

    Figure 7.  Pneumatic damping of first-order and second-order elastic model of 4.8 m+3.0 m configuration

    图 8  5.2 m+3.35 m构型的一阶和二阶弹性模型气动阻尼

    Figure 8.  Pneumatic damping of first-order and second-order elastic model of 5.2 m+3.35 m configuration

    图 9  3种构型的弯矩响应对比

    Figure 9.  Comparison of bending moment response of three configurations

    表  1  3种构型满足标准的情况

    Table  1.   Three configurations meet standards

    整流罩
    构型
    D/d
    (参考值≤1.6)
    l/D
    (参考值>2.8)
    对标情况
    5.2 m+3.0 m构型1.732.212项指标均超参考值
    4.8 m+3.0 m构型1.602.451项指标超参考值,
    1项临界
    5.2 m+3.35 m构型1.55未超出参考值
    下载: 导出CSV

    表  2  弹性模型设计相似关系

    Table  2.   Similarity relationship of elastic model design

    设计参数缩比参数 关系
    速度v速度比KvKρ−1/2Kq1/2
    密度$\rho $密度比Kρ
    动压q动压比Kq
    质量W质量比Kw$K_p K^3_L $
    头部质量
    长度L长度比KL
    一阶频率f1频率比KfKρ−1/2Kq1/2KL−1
    二阶频率f2
    刚度E刚度比KE$K_q K^4_L $
    下载: 导出CSV
  • [1] 季辰, 吴彦森, 侯英昱. 捆绑式运载火箭跨声速气动阻尼特性试验研究[J]. 实验流体力学, 2020, 34(6): 24-31.

    JI C, WU Y S, HOU Y Y. Experimental study of aerodynamic damping characteristics of a launch vehicle with boosters in transonic flow[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(6): 24-31(in Chinese).
    [2] 赵瑞, 荣吉利, 李跃军. 整流罩母线形状对脉动压力环境的影响研究[J]. 兵工学报, 2017, 38(5): 1020-1026. doi: 10.3969/j.issn.1000-1093.2017.05.023

    ZHAO R, RONG J L, LI Y J. An investigation of fluctuating pressure environment around rocket fairing with different curvetypes[J]. Acta Armamentarii, 2017, 38(5): 1020-1026(in Chinese). doi: 10.3969/j.issn.1000-1093.2017.05.023
    [3] 倪嘉敏. 我国运载火箭气动设计回顾[C]//近代空气动力学研讨会. 北京: 中国空气动力学会, 2005: 189-195.

    NI J M. Review of aerodynamic design of China’s launch vehicle[C]//Proceedings of the Modern Aerodynamics Symposium. Beijing: Chinese Aerodynamics Research Society, 2005: 189-195(in Chinese).
    [4] COLE H A, JR ERICKSON A L, RAINEY A G. Buffeting during atmospheric ascent: NASA-SP-8001[S]. Washington, D. C.: NASA, 1970.
    [5] AZEVEDO J L F. Aeroelastic analysis of launch vehicles in transonic flight: AIAA 87-0708[R]. Reston: AIAA, 1987.
    [6] 龙乐豪. 液体弹道导弹与运载火箭总体设计[M]. 北京: 宇航出版社, 1989: 546-548.

    LONG L H. General design of liquid missile and launch vehicle[M]. Beijing: Aerospace Publishing Company, 1989: 546-548(in Chinese).
    [7] COLE S R, HENNING T L. Buffet response of a hammerhead launch vehicle wind-tunnel model[J]. Journal of Spacecraft and Rockets, 1992, 29(3): 24-30.
    [8] SINCLAIR A J, FLOWERS G T. Low-order aeroelastic model of launch-vehicle dynamics: AIAA 2010-7725[R]. Reston: AIAA, 2010.
    [9] BOMBARDIER G D. Final post-test report on seven percent transonic buffet model for various Titan Ⅲ configurations: SSD-CR-66-563[R]. Denver: Mar-Tin Co. , 1967.
    [10] 冯明溪, 王志安. 火箭跨音速动导数和抖振实验[J]. 宇航学报, 1987(1): 55-62.

    FENG M X, WANG Z A. Experiments of transonic derivatives and buffeting of rocket[J]. Journal of Astronautics, 1987(1): 55-62(in Chinese).
    [11] 白葵, 冯明溪. 弹性模型实验技术[J]. 流体力学试验与测量, 1999, 13(1): 38-42.

    BAI K, FENG M X. Aeroelastic model and the buffet experimental technique[J]. Experiments and Measurements in Fluid Mechanics, 1999, 13(1): 38-42(in Chinese).
    [12] JI C, RAN J H, LI F, et al. The aerodynamic damping test of elastic launch vehicle model in transonic flow[C]//Proceedings of the 64th International Astronautical Congress. Pairs: International Astronautical Federation, 2013.
    [13] 季辰, 吴彦森, 何岗, 等. 运载火箭气动阻尼风洞试验研究[C]//第十二届全国空气弹性学术交流会. 北京: 中国空气动力学会, 2011: 466-470.

    JI C, WU Y S, HE G, et al. Experimental study on aerodynamic damping wind tunnel of launch vehicle[C]//Proceedings of the 12th National Aeroelasticity Conference. Beijing: Chinese Aerodynamics Research Society, 2011: 466-470(in Chinese).
    [14] 刘子强. 跨音速气动-弹性耦合作用的非阻尼现象研究[D]. 北京: 中国航天空气动力技术研究院, 2001.

    LIU Z Q. Transonic aerodynamics non-damped phenomenon of elastic coupling[D]. Beijing: China Academy of Aerospace Aerodynamics, 2001(in Chinese).
    [15] 龙乐豪. 液体弹道导弹与运载火箭总体设计[M]. 北京: 宇航出版社, 1989: 9-11.

    LONG L H. General design of liquid missile and launch vehicle [M]. Beijing: Aerospace Publishing Company, 1989: 9-11(in Chinese).
    [16] JUANG J N, PAPPA R S. An eigensystem realization algorithm for modal parameter identification and model reduction[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(5): 620-627. doi: 10.2514/3.20031
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  216
  • HTML全文浏览量:  100
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-03
  • 录用日期:  2022-07-08
  • 网络出版日期:  2022-08-26
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答