留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半监督局部特征保留图卷积高光谱图像分类

丁遥 张志利 赵晓枫 阳能军 蔡尉尉 蔡伟

丁遥,张志利,赵晓枫,等. 半监督局部特征保留图卷积高光谱图像分类[J]. 北京航空航天大学学报,2023,49(12):3409-3418 doi: 10.13700/j.bh.1001-5965.2022.0109
引用本文: 丁遥,张志利,赵晓枫,等. 半监督局部特征保留图卷积高光谱图像分类[J]. 北京航空航天大学学报,2023,49(12):3409-3418 doi: 10.13700/j.bh.1001-5965.2022.0109
DING Y,ZHANG Z L,ZHAO X F,et al. Semi-supervised locality preserving dense graph convolution for hyperspectral image classification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3409-3418 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0109
Citation: DING Y,ZHANG Z L,ZHAO X F,et al. Semi-supervised locality preserving dense graph convolution for hyperspectral image classification[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3409-3418 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0109

半监督局部特征保留图卷积高光谱图像分类

doi: 10.13700/j.bh.1001-5965.2022.0109
基金项目: 国家自然科学基金(41404022);173基础加强计划基金(2021-JCJQ-JJ-0871)
详细信息
    通讯作者:

    E-mail:157918018@qq.com

  • 中图分类号: V221+.3;TP751

Semi-supervised locality preserving dense graph convolution for hyperspectral image classification

Funds: National Natural Science Foundation of China (41404022); 173 National Key Basic Research Strengthen Foundation of China (2021-JCJQ-JJ-0871)
More Information
  • 摘要:

    图卷积网络(GCN)应用于高光谱图像(HSI)分类是现在研究的热点和前沿。但是现有的图卷积网络算法依然面临着计算量大、过度平滑和特征自适应选择的问题。面对这些问题提出超像素分割算法减少网络节点数量,在保留节点光谱特征的同时降低运算量;采用DenseNet结构保留卷积过程特征,解决图卷积过度平滑问题;最后提出一种半监督局部特征保留稠密连接上下文感知的图卷积网络算法,利用层注意力机制针对分类目标进行特征自适应选择。所提算法实现了端到端的半监督分类,在3个真实数据集上,与最新的分类算法对比实验结果表明:所提算法在各项指标上都有较好的表现,提高了HSI的分类正确率。

     

  • 图 1  DGCN-CAL 网络概述

    Figure 1.  An overview of the DGCN-CAL network

    图 2  三层DGCN网络特征信息保留、提取示意图

    Figure 2.  Illustration of a three-layer Locality Preserving GCN

    图 3  HSI预处理示意图

    Figure 3.  Schematic diagram of HSI preprocessing.

    图 4  PU数据集不同算法分类结果

    Figure 4.  Classification maps obtained by different algorithms on PU dataset

    图 5  KSC数据集不同算法分类结果

    Figure 5.  Classification maps obtained by different algorithms on KSC dataset

    图 6  Salinas数据集不同算法分类结果

    Figure 6.  Classification maps obtained by different algorithms on Salinas dataset

    图 7  不同训练样本条件下各种算法的 OA 性能

    Figure 7.  Overall accuracies of various algorithms under different numbers of labeled examples per class

    表  1  PU数据集用于训练和测试像素数据量

    Table  1.   Numbers of training and testing pixels in PU date set

    序号类型训练数据量测试数据量
    1Asphalt306601
    2Meadows3018619
    3Gravel302069
    4Trees303034
    5Painted metal sheets301315
    6Bare soil304999
    7Bitumen301300
    8Self-Blocking Bricks303652
    9Shadows30917
    下载: 导出CSV

    表  2  KSC数据集用于训练和测试像素数据量

    Table  2.   Numbers of training and testing pixels in KSC date set

    序号类型训练数据量测试数据量
    1Scrub30731
    2Willow swamp30213
    3CP hammock30226
    4Slash pine30222
    5Oak/Broadleaf30131
    6Hardwood30199
    7Swamp3075
    8Graminoid30401
    9Spartina marsh30490
    10Cattail marsh30374
    11Salt marsh30389
    12Mud flats30473
    13Water30897
    下载: 导出CSV

    表  3  Salinas数据用于训练和测试像素数据量

    Table  3.   Numbers of training and testing pixels in Salinas date set

    序号类型训练数据量测试数据量
    1Broccoli green weed 1301979
    2Broccoli green weed 2303696
    3Fallow301946
    4Fallow rough plow301364
    5Fallow smooth302648
    6Stubble303929
    7Celery303549
    8Grapes untrained3011241
    9Soil vineyard develop306137
    10Corn Senesced green weeds303248
    11Lettuce romianes-4wk301038
    12Lettuce romianes-5wk301897
    13Lettuce romianes-6wk30886
    14Lettuce romianes-7wk301040
    15Vineyard untrained307238
    16Vineyard vertical trellis301777
    下载: 导出CSV

    表  4  网络的结构细节

    Table  4.   The architecture details of proposed network

    结构组成
    像素-区域处理差像素的光谱(PCA)
    特征(输入)(SLIC)
    图构建计算图的邻接矩阵A
    图处理DGCN (输入节点的光谱维度 -32)
    BN
    ReLU
    上下文感知学习GAT (32)
    BN
    输出交叉熵函数 (分类目标)
    下载: 导出CSV

    表  5  PU数据集上的精度对比

    Table  5.   Accuracy comparisons for PU scene

    算法精度/%OA/%AA/%κ
    123456789
    DR-CNN92.1096.3984.2395.2697.7790.4489.0578.4996.3492.6291.120.90
    RBF-SVM83.1466.7569.6588.2492.1893.5491.8490.6795.3877.6585.710.77
    JSDF82.4090.7686.7192.88100.0094.3096.6294.6999.5690.8293.100.88
    S2GCN92.8787.0687.9790.85100.0088.6998.8889.9798.8989.7492.800.87
    S2GAT87.3187.9477.2896.5796.7495.1187.4595.8694.3190.5690.950.90
    DGCN-CAL91.4297.1398.3187.1193.2198.8294.2793.6894.8295.1294.300.95
    下载: 导出CSV

    表  6  KSC数据集上的精度对比

    Table  6.   Accuracy comparisons for KSC scene

    算法12345678910111213OA/%AA/%κ
    DR-CNN98.7297.9797.4962.4694.6697.65100.0097.4299.9398.84100.0098.9410097.2195.700.97
    RBF-SVM93.2792.1490.2791.7485.1086.2372.9891.3389.1790.6288.3592.4690.1388.4688.750.86
    JSDF100.0092.0795.1359.0185.3486.4898.9394.76100.00100.00100.0095.5210097.2194.380.95
    S2GCN95.1295.1596.1771.1797.7189.9598.2289.1099.5998.0499.2395.6310095.4494.240.95
    S2GAT99.1696.2798.3084.6296.2393.1197.1895.6796.89100.00100.0097.96100.0096.3196.560.97
    DGCN-CAL100.0098.1398.6193.1492.3897.22100.00100.0095.63100.00100.0095.17100.0097.8497.710.98
    下载: 导出CSV

    表  7  Salinas数据集上的精度对比

    Table  7.   Accuracy comparisons for the Salinas scene

    算法精度/%OA/%AA/%κ
    12345678910111213141516
    DR-CNN99.4099.4698.5899.7098.9099.5799.5075.5999.7594.2997.5799.9999.9598.5772.1898.4590.3595.720.89
    RBF-SVM97.4792.6596.7192.2796.4789.5893.7377.3692.3190.8973.6493.6189.2292.6171.3881.3486.7588.830.86
    JSDF100.00100.00100.0099.9399.77100.0099.9987.7999.6796.5399.76100.00100.0098.7181.8698.9994.6797.690.94
    S2GCN99.0199.1897.1599.1197.5599.3290.0670.6898.3290.9798.0099.5697.8395.7570.3696.9088.3994.300.87
    S2GAT99.6299.3796.5199.6095.2198.6499.7377.6795.3293.7694.3399.6192.4092.7277.3195.6693.6794.210.93
    DGCN-CAL100.0098.5199.6299.2088.6495.3597.3990.6399.8196.1694.8399.4498.6292.1798.2795.4495.7996.510.96
    下载: 导出CSV

    表  8  PU数据集上不同算法的消融实验结果

    Table  8.   Ablation experiments results of different algorithms on PU dataset

    算法OA/%AA/%κ
    GCN-CAL91.6892.870.92
    DGCN92.5991.970.92
    DGCN-CAL95.1294.300.95
    下载: 导出CSV

    表  9  KSC数据集上不同算法的消融实验结果

    Table  9.   Ablation experiments results of different algorithms on KSC dataset

    算法OA/%AA/%κ
    GCN-CAL95.1895.390.95
    DGCN96.2495.810.96
    DGCN-CAL97.8497.710.98
    下载: 导出CSV

    表  10  Salinas数据集上不同算法的消融实验结果

    Table  10.   Ablation experiments results of different algorithms on Salinas dataset

    算法OA/%AA/%κ
    GCN-CAL93.0396.300.94
    DGCN92.1194.170.92
    DGCN-CAL95.7996.510.96
    下载: 导出CSV
  • [1] RASTI B, HONG D F, HANG R L, et al. Feature extraction for hyperspectral imagery: The evolution from shallow to deep, overview and toolbox[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8(4): 60-88. doi: 10.1109/MGRS.2020.2979764
    [2] DING Y, ZHAO X F, ZHANG Z L, et al. Semi-supervised locality preserving dense graph neural network with ARMA filters and context-aware learning for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1-12.
    [3] DING Y, ZHAO X F, ZHANG Z L, et al. Graph sample and aggregate-attention network for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 1-5.
    [4] ZHONG P, GONG Z Q, SHAN J X. Multiple instance learning for multiple diverse hyperspectral target characterizations[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(1): 246-258. doi: 10.1109/TNNLS.2019.2900465
    [5] DING Y, ZHAO X F, ZHANG Z L, et al. Multiscale graph sample and aggregate network with context-aware learning for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 4561-4572. doi: 10.1109/JSTARS.2021.3074469
    [6] BO C J, LU H C, WANG D. Hyperspectral image classification via JCR and SVM models with decision fusion[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(2): 177-181. doi: 10.1109/LGRS.2015.2504449
    [7] MA L, CRAWFORD M M, TIAN J W. Local manifold learning-based k-nearest-neighbor for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(11): 4099-4109.
    [8] DING Y, ZHANG Z L, ZHAO X F, et al. Deep hybrid: Multi-graph neural network collaboration for hyperspectral image classification[J]. Defence Technology, 2023, 23: 164-176. doi: 10.1016/j.dt.2022.02.007
    [9] CHEN Y S, LIN Z H, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107. doi: 10.1109/JSTARS.2014.2329330
    [10] LI T, ZHANG J P, ZHANG Y. Classification of hyperspectral image based on deep belief networks[C]//2014 IEEE International Conference on Image Processing. Piscataway: IEEE Press, 2015: 5132-5136.
    [11] FENG J E, FENG X L, CHEN J T, et al. Generative adversarial networks based on collaborative learning and attention mechanism for hyperspectral image classification[J]. Remote Sensing, 2020, 12(7): 1149. doi: 10.3390/rs12071149
    [12] MOU L C, GHAMISI P, ZHU X X. Deep recurrent neural networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(7): 3639-3655. doi: 10.1109/TGRS.2016.2636241
    [13] HONG D F, YOKOYA N, CHANUSSOT J, et al. Joint and progressive subspace analysis (JPSA) with spatial-spectral manifold alignment for semisupervised hyperspectral dimensionality reduction[J]. IEEE Transactions on Cybernetics, 2020, 51(7): 3602-3615.
    [14] HU W, HUANG Y Y, WEI L, et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 2015: 1-12.
    [15] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2016: 770-778.
    [16] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2020-03-04) [2021-06-04]. https://arxiv.org/abs/1609.02907.
    [17] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 1025-1035.
    [18] DUVENAUD D, MACLAURIN D, AGUILERA-IPARRAGUIRRE J, et al. Convolutional networks on graphs for learning molecular fingerprints[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2015: 2224-2232.
    [19] WANG C, PAN S R, HU R Q, et al. Attributed graph clustering: A deep attentional embedding approach[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2019: 3670-3676.
    [20] QIN A Y, SHANG Z W, TIAN J Y, et al. Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 241-245. doi: 10.1109/LGRS.2018.2869563
    [21] HONG D F, GAO L R, YAO J, et al. Graph convolutional networks for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(7): 5966-5978. doi: 10.1109/TGRS.2020.3015157
    [22] WAN S, GONG C, ZHONG P, et al. Multiscale dynamic graph convolutional network for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(5): 3162-3177. doi: 10.1109/TGRS.2019.2949180
    [23] LIU W F, GONG M G, TANG Z D, et al. Locality preserving dense graph convolutional networks with graph context-aware node representations[J]. Neural Networks, 2021, 143: 108-120. doi: 10.1016/j.neunet.2021.05.031
    [24] SCHÖLKOPF B, SMOLA A, MÜLLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. doi: 10.1162/089976698300017467
    [25] ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11): 2274-2282. doi: 10.1109/TPAMI.2012.120
    [26] ZOU F, SHEN L, JIE Z, et al. A sufficient condition for convergences of adam and rmsprop[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2019: 11127-11135.
    [27] ZHANG M M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing, 2018, 27(6): 2623-2634. doi: 10.1109/TIP.2018.2809606
    [28] SHA A S, WANG B, WU X F, et al. Semisupervised classification for hyperspectral images using graph attention networks[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(1): 157-161. doi: 10.1109/LGRS.2020.2966239
    [29] LI W, WU G D, ZHANG F, et al. Hyperspectral image classification using deep pixel-pair features[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(2): 844-853. doi: 10.1109/TGRS.2016.2616355
  • 加载中
图(7) / 表(10)
计量
  • 文章访问数:  969
  • HTML全文浏览量:  8
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 录用日期:  2022-04-08
  • 网络出版日期:  2022-04-29
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答