留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于滚动时域控制的多路径进场航班排序优化

乐美龙 吴宪晟 胡钰明

乐美龙,吴宪晟,胡钰明. 基于滚动时域控制的多路径进场航班排序优化[J]. 北京航空航天大学学报,2023,49(12):3222-3229 doi: 10.13700/j.bh.1001-5965.2022.0120
引用本文: 乐美龙,吴宪晟,胡钰明. 基于滚动时域控制的多路径进场航班排序优化[J]. 北京航空航天大学学报,2023,49(12):3222-3229 doi: 10.13700/j.bh.1001-5965.2022.0120
LE M L,WU X S,HU Y M. Arrival flights optimal sequencing with multi-path selection based on rolling horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3222-3229 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0120
Citation: LE M L,WU X S,HU Y M. Arrival flights optimal sequencing with multi-path selection based on rolling horizon control[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3222-3229 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0120

基于滚动时域控制的多路径进场航班排序优化

doi: 10.13700/j.bh.1001-5965.2022.0120
基金项目: 国家自然科学基金(71471110); 江苏省自然科学基金(BK20151497)
详细信息
    通讯作者:

    E-mail:lemeilong@126.com

  • 中图分类号: V355

Arrival flights optimal sequencing with multi-path selection based on rolling horizon control

Funds: National Natural Science Foundation of China (71471110); Natural Science Foundation of Jiangsu Province (BK20151497)
More Information
  • 摘要:

    进场航班排序优化是提高进场航班着落效率、减少航班延误的有效方法。基于此,以最大化着落效率为目标,结合多跑道、多航路选择,考虑实际航路点限制,提出了多路径多跑道一体化进场航班排序优化混合整数规划模型。为解决大规模航班排序计算的实时性问题,提出了多航路点滚动时域控制算法。以广州白云国际机场终端区为实例进行验证,采用实际进场航班数据开展计算实验,在尾流安全间隔上,采用RECAT-CN运行标准,计算结果表明:小规模航班架次时(23架),所提模型最大降落时间比先到先服务方法提前55 s,比未优化时提前271 s;大规模航班架次时(104架),仅靠求解器在3600 s内未找到可行解,所提算法在128.65 s找到解。所提模型和算法有效,可应用于实际航班排序优化。

     

  • 图 1  RHC策略示意图

    Figure 1.  Schematic diagram of RHC strategy

    图 2  MWRHC算法第1时域和第2时域示意图

    Figure 2.  Schematic diagram of the first and the second horizons of MWRHC algorithm

    图 3  航班终端区进近航路流图

    Figure 3.  Flow diagram of approach routes in terminal area of flight

    图 4  进场航班到走廊口预计到达时间分布

    Figure 4.  Distribution of estimate arrival time of arrival flights to corridor gate

    图 5  航班降落顺序和降落时间对比

    Figure 5.  Comparison of flight landing sequence and landing time

    表  1  RECAT-CN尾流间隔实验运行标准[20]

    Table  1.   RECAT-CN wake interval test operation standard[20] km

    前机后机
    JBCML
    JMRS 9.311.113.014.8
    BMRS5.67.49.313.0
    CMRSMRSMRS6.511.1
    MMRSMRSMRSMRS9.3
    LMRSMRSMRSMRSMRS
    下载: 导出CSV

    表  2  进近航路飞行路线

    Table  2.   Approach routes of flight path

    走廊口航路编号进场航路
    GYA 1 GYA—AGVOS—GG404—GG401—01
    2 GYA—AGVOS—GG404—GG407—GG403—02R
    IGONO 3 IGONO—GG442—TAN—AGVOS—GG404—GG401—01
    4 IGONO—GG442—TAN—AGVOS—GG404—GG407—GG403—02R
    5 IGONO—GG442—CON—CEN—GG408—GG407—GG401—01
    6 IGONO—GG442—CON—CEN—GG408—GG407—GG403—02R
    ATAGA 7 ATAGA—GG428—TAN—AGVOS—GG404—GG401—01
    8 ATAGA—GG428—TAN—AGVOS—GG404—GG407—GG403—02R
    9 ATAGA—GG428—CON—CEN—GG408—GG407—GG401—01
    10 ATAGA—GG428—CON—CEN—GG408—GG407—GG403—02R
    P270 11 P270—SHL—CEN—GG408—GG407—GG401—01
    12 P270—SHL—CEN—GG408—GG407—GG403—02R
    IDUMA 13 IDUMA—SHL—CEN—GG408—GG407—GG401—01
    14 IDUMA—SHL—CEN—GG408—GG407—GG403—02R
    下载: 导出CSV

    表  3  模型求解结果对比

    Table  3.   Comparison of model solution results

    航班序号机型到走廊口时间/s走廊口航班降落时间/s
    优化前FCFSMILP
    1M0GYA9559551420
    2M40IGONO137216681372
    3M215IGONO154717381772
    4M249IGONO165517861 930
    5M349ATAGA1 8351 8712 026
    6M374GYA1 94320551497
    7M404IGONO1 99121252096
    8M514IDUMA209921731 978
    9B549ATAGA214722432319
    10B564IGONO220723092385
    11M708GYA225623702144
    12M719ATAGA236424182205
    13M858GYA247224662433
    14B1033IDUMA252025362253
    15M1038IGONO262926452740
    16M1068GYA267727152670
    17M1218IGONO273728292880
    18B1448ATAGA293428992976
    19M1512GYA304329472810
    20B1597IGONO309129953097
    21M1602IGONO320031043049
    22B1647P270330831522928
    23B1762IGONO341632003145
    下载: 导出CSV

    表  4  Gurobi求解器与MWRHC算法结果对比

    Table  4.   Comparison of algorithm results between Gurobi solver and MWRHC

    时段/h航班
    数量
    目标值/s 计算时间/s
    Gurobi
    求解器
    MWRHC
    算法
    Gurobi
    求解器
    MWRHC
    算法
    0~0.5233145 3145 51.3817.95
    0~14149174917 118.2527.60
    0~1.5606736 6736383.1352.31
    0~27785598559 1697.7274.20
    0~2.5881012410124 3329.2677.66
    0~310411971 3600128.65
    下载: 导出CSV
  • [1] BEASLEY J E, KRISHNAMOORTHY M, SHARAIHA Y M, et al. Scheduling aircraft landings: The static case[J]. Transportation Science, 2000, 34(2): 180-197. doi: 10.1287/trsc.34.2.180.12302
    [2] MESGARPOUR M, POTTS C N, BENNELL J A. Models for aircraft landing optimization[C]//Proceedings of the International Conference on Research in Air Transportation. Budapest: ICRAT, 2010: 529-532.
    [3] HANCERLIOGULLARI G, RABADI G, AL-SALEM A H, et al. Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32: 39-48. doi: 10.1016/j.jairtraman.2013.06.001
    [4] GHONIEM A, SHERALI H D, BAIK H. Enhanced models for a mixed arrival-departure aircraft sequencing problem[J]. INFORMS Journal on Computing, 2014, 26(3): 514-530. doi: 10.1287/ijoc.2013.0581
    [5] FURINI F, KIDD M P, PERSIANI C A, et al. State space reduced dynamic programming for the aircraft sequencing problem with constrained position shifting[C]//Proceedings of the International Symposium on Combinatorial Optimization. Berlin: Springer, 2014: 267-279.
    [6] WU Y, SUN L G, QU X J. A sequencing model for a team of aircraft landing on the carrier[J]. Aerospace Science and Technology, 2016, 54: 72-87. doi: 10.1016/j.ast.2016.04.007
    [7] MUKHERJEE A, HANSEN M. A dynamic rerouting model for air traffic flow management[J]. Transportation Research Part B:Methodological, 2009, 43(1): 159-171. doi: 10.1016/j.trb.2008.05.011
    [8] 张启钱, 胡明华, 施赛锋, 等. 多跑道航班起降调度优化算法[J]. 交通运输工程学报, 2012, 12(6): 63-68. doi: 10.3969/j.issn.1671-1637.2012.06.010

    ZHANG Q Q, HU M H, SHI S F, et al. Optimization algorithm of flight takeoff and landing on multi-runways[J]. Journal of Traffic and Transportation Engineering, 2012, 12(6): 63-68(in Chinese). doi: 10.3969/j.issn.1671-1637.2012.06.010
    [9] SAMA M, D’ARIANO A, D’ARIANO P, et al. Optimal aircraft scheduling and routing at a terminal control area during disturbances[J]. Transportation Research Part C:Emerging Technologies, 2014, 47: 61-85. doi: 10.1016/j.trc.2014.08.005
    [10] 徐肖豪, 于跃, 黄宝军, 等. 基于ISWO的机场进离场航班优化排序研究[J]. 计算机仿真, 2014, 31(7): 63-67. doi: 10.3969/j.issn.1006-9348.2014.07.015

    XU X H, YU Y, HUANG B J, et al. Research on arrival and departure sequencing based on ISWO[J]. Computer Simulation, 2014, 31(7): 63-67(in Chinese). doi: 10.3969/j.issn.1006-9348.2014.07.015
    [11] DIAO X, CHEN C H. A sequence model for air traffic flow management rerouting problem[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 110: 15-30. doi: 10.1016/j.tre.2017.12.002
    [12] 张兆宁, 刘珂璇. 基于替代航路的进场航班排序优化方法[J]. 数学的实践与认识, 2019, 49(12): 191-198.

    ZHANG Z N, LIU K X. Arrival sequencing method based on alternative routes[J]. Mathematics in Practice and Theory, 2019, 49(12): 191-198(in Chinese).
    [13] 郭野晨风, 胡明华, 张颖, 等. 改进的协同航路分配优化模型及算法研究[J]. 交通运输系统工程与信息, 2020, 20(6): 226-232. doi: 10.16097/j.cnki.1009-6744.2020.06.030

    GUO Y C F, HU M H, ZHANG Y, et al. Improved model and algorithm for optimizing collaborative trajectory options program[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 226-232(in Chinese). doi: 10.16097/j.cnki.1009-6744.2020.06.030
    [14] 田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226. doi: 10.19818/j.cnki.1671-1637.2020.06.019

    TIAN W, YANG F, YIN J N, et al. Multi-objective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226(in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.06.019
    [15] 张军峰, 游录宝, 周铭, 等. 基于点融合系统的多目标进场排序与调度[J]. 北京航空航天大学学报, 2023, 49(1): 66-73.

    ZHANG J F, YOU L B, ZHOU M, et al. Multi-objective arrival sequencing and scheduling based on point merge system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(1): 66-73(in Chinese).
    [16] 乐美龙, 李星灿, 高金敏. 机场到达时刻数量决策随机模型[J]. 系统工程理论与实践, 2017, 37(11): 2948-2954. doi: 10.12011/1000-6788(2017)11-2948-07

    LE M L, LI X C, GAO J M. Stochastic model of determining airport arrival slots number[J]. Systems Engineering-Theory & Practice, 2017, 37(11): 2948-2954(in Chinese). doi: 10.12011/1000-6788(2017)11-2948-07
    [17] ZHANG Q, LE M L, XU Y. Collaborative delay management towards demand-capacity balancing within user driven prioritisation process[J]. Journal of Air Transport Management, 2021, 91: 102017. doi: 10.1016/j.jairtraman.2020.102017
    [18] 王湛, 吴艺. 基于FS-MOPSO的多机场终端区协同航班调度策略[J]. 西南交通大学学报, 2017, 52(1): 179-185. doi: 10.3969/j.issn.0258-2724.2017.01.025

    WANG Z, WU Y. Collaborative aircrafts scheduling strategy in metroplex terminal area based on FS-MOPSO[J]. Journal of Southwest Jiaotong University, 2017, 52(1): 179-185(in Chinese). doi: 10.3969/j.issn.0258-2724.2017.01.025
    [19] 张建同, 杨文娟. 基于优先级的进离港航班排序优化问题研究[J]. 运筹与管理, 2018, 27(6): 115-121.

    ZHANG J T, YANG W J. The optimization based on priority for a mixed arrival-departure aircraft sequencing problem[J]. Operations Research and Management Science, 2018, 27(6): 115-121(in Chinese).
    [20] 中国民航网. 航空器尾流重新分类: 突破限制, 提升效率[EB/OL]. (2019-02-28) [2022-03-01]. http://www.caacnews.com.cn/1/3/201902/t20190228_1268076.html.

    CAAC News. Aircraft wake reclassification: Breaking through limitations and improving efficiency [EB/OL] (2019-02-28) [2023-03-01]. http://www.caacnews.com.cn/1/3/201902/t20190228_1268076.html(in Chinese).
    [21] HU X B, CHEN W H. Receding horizon control for aircraft arrival sequencing and scheduling[J]. IEEE Transactions on Intelligent Transportation Systems, 2005, 6(2): 189-197. doi: 10.1109/TITS.2005.848365
  • 加载中
图(5) / 表(4)
计量
  • 文章访问数:  399
  • HTML全文浏览量:  12
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-07-12
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答