留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维类间边界Fisher分析的多元时间序列降维

胡钢 李正欣 张凤鸣 赵永梅 武江南

胡钢,李正欣,张凤鸣,等. 二维类间边界Fisher分析的多元时间序列降维[J]. 北京航空航天大学学报,2023,49(12):3537-3546 doi: 10.13700/j.bh.1001-5965.2022.0128
引用本文: 胡钢,李正欣,张凤鸣,等. 二维类间边界Fisher分析的多元时间序列降维[J]. 北京航空航天大学学报,2023,49(12):3537-3546 doi: 10.13700/j.bh.1001-5965.2022.0128
HU G,LI Z X,ZHANG F M,et al. Dimension reduction of multivariate time series based on two-dimensional inter-class marginal Fisher analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3537-3546 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0128
Citation: HU G,LI Z X,ZHANG F M,et al. Dimension reduction of multivariate time series based on two-dimensional inter-class marginal Fisher analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3537-3546 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0128

二维类间边界Fisher分析的多元时间序列降维

doi: 10.13700/j.bh.1001-5965.2022.0128
基金项目: 国家自然科学基金(62002381)
详细信息
    通讯作者:

    E-mail:lizhengxin_2005@163.com

  • 中图分类号: TP391

Dimension reduction of multivariate time series based on two-dimensional inter-class marginal Fisher analysis

Funds: National Natural Science Foundation of China (62002381)
More Information
  • 摘要:

    针对传统边界Fisher分析及相关方法用于多元时间序列降维的局限性,提出一种基于二维类间边界Fisher分析的多元时间序列降维方法。针对边界Fisher分析进行模型改进,在本征图和惩罚图的基础上引入类间惩罚图,用来描述各个类中心之间的距离,并对目标函数进行改进,提出类间边界Fisher分析模型;对所提模型进行二维化拓展,提出基于二维类间边界Fisher分析的降维模型,使其能够直接处理二维矩阵数据,有效保留结构信息;通过计算协方差矩阵将多元时间序列集转化为等长特征集,利用降维模型将等长特征集投影到低维空间,达到数据降维和特征表示的目的。实验结果表明:所提方法能够有效对多元时间序列进行降维,达到良好的分类效果。

     

  • 图 1  MFA方法基本思想

    Figure 1.  Basic idea of MFA algorithm

    图 2  ICMFA方法基本思想

    Figure 2.  Basic idea of ICMFA algorithm

    图 3  分类精度直方图

    Figure 3.  Histogram of classification accuracy

    图 4  降维有效性可视化

    Figure 4.  Visualization of dimensionality reduction effectiveness

    图 5  参数敏感性分析

    Figure 5.  Parameter sensitivity analysis

    图 6  时间代价比较

    Figure 6.  Time costs comparison

    表  1  计算复杂度比较

    Table  1.   Comparison of computational complexity

    降维方法训练复杂度投影复杂度
    2DICMFA$O\left( {n{m^2}t + {n^2} + n{m^3}} \right)$$O\left( {n{m^2}p} \right)$
    PCA$O{\text{(}}n{m^2}t{\text{ + }}n{m^3}{\text{)}}$$O\left( {nmpt} \right)$
    SVD$O{\text{(}}n{m^3}{\text{)}}$$O\left( {nmpt} \right)$
    下载: 导出CSV

    表  2  MTS数据集信息

    Table  2.   MTS dataset information

    数据集类别数特征维度最短序列
    时间长度
    最长序列
    时间长度
    样本数
    ASL8224795216
    JV912729640
    NF24509971337
    WR262128191844
    EEG26425625622
    LP146151588
    LP256151547
    LP346151547
    下载: 导出CSV

    表  3  实验分类精度结果

    Table  3.   Experimental classification accuracy results

    方法 K 分类精度 平均分类精度
    ASL JV NF WR EEG LP1 LP2 LP3
    PBLDA 1 0.71 0.48 0.84 0.73 0.68 0.38 0.51 0.47 0.60
    5 0.69 0.43 0.82 0.73 0.50 0.30 0.45 0.40 0.54
    10 0.62 0.40 0.81 0.73 0.55 0.27 0.43 0.47 0.54
    S-DLPP 1 0.81 0.32 0.70 0.66 0.55 0.55 0.47 0.45 0.56
    5 0.69 0.30 0.74 0.73 0.27 0.55 0.36 0.53 0.52
    10 0.62 0.30 0.75 0.66 0.36 0.41 0.47 0.43 0.50
    RFR 1 0.94 0.66 0.85 0.98 0.95 0.82 0.53 0.70 0.80
    5 0.87 0.69 0.87 0.98 0.82 0.72 0.64 0.70 0.80
    10 0.77 0.69 0.88 0.98 0.59 0.65 0.47 0.66 0.71
    PCA 1 0.81 0.34 0.76 0.95 0.59 0.84 0.64 0.70 0.70
    5 0.82 0.35 0.77 0.95 0.50 0.82 0.47 0.53 0.65
    10 0.75 0.35 0.76 0.93 0.41 0.68 0.43 0.55 0.61
    CPCA 1 0.94 0.48 0.76 0.98 0.59 0.83 0.68 0.72 0.75
    5 0.93 0.52 0.76 0.98 0.45 0.75 0.57 0.53 0.69
    10 0.89 0.52 0.75 0.98 0.32 0.68 0.45 0.51 0.64
    2DICMFA 1 1.00 0.69 0.88 0.86 0.95 0.86 0.62 0.72 0.82
    5 1.00 0.70 0.86 0.75 0.77 0.78 0.51 0.68 0.76
    10 1.00 0.70 0.85 0.70 0.64 0.68 0.43 0.62 0.70
    下载: 导出CSV

    表  4  p在不同数据集中的取值

    Table  4.   p values in different data sets

    数据集p数据集p
    ASL10EEG10
    JV11LP14
    NF4LP22
    WR10LP31
    下载: 导出CSV
  • [1] ALI M, BORGO R, JONES M W. Concurrent time-series selections using deep learning and dimension reduction[J]. Knowledge-Based Systems, 2021, 233: 107507. doi: 10.1016/j.knosys.2021.107507
    [2] LU M, HAMUNYELA E, VERBESSELT J, et al. Dimension reduction of multi-spectral satellite image time series to improve deforestation monitoring[J]. Remote Sensing, 2017, 9(10): 1025. doi: 10.3390/rs9101025
    [3] SIGGIRIDOU E, KUGIUMTZIS D. Dimension reduction of polynomial regression models for the estimation of granger causality in high-dimensional time series[J]. IEEE Transactions on Signal Processing, 2021, 69: 5638-5650. doi: 10.1109/TSP.2021.3114997
    [4] MA Q L, CHEN Z P, TIAN S, et al. Difference-guided representation learning network for multivariate time series classification[J]. IEEE Transactions on Cybernetics, 2022, 52(6): 4717-4727. doi: 10.1109/TCYB.2020.3034755
    [5] GUO H Y, WANG L D, LIU X D, et al. Information granulation-based fuzzy clustering of time series[J]. IEEE Transactions on Cybernetics, 2021, 51(12): 6253-6261. doi: 10.1109/TCYB.2020.2970455
    [6] JASTRZEBSKA A. Lagged encoding for image-based time series classification using convolutional neural networks[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2020, 13(3): 245-260. doi: 10.1002/sam.11455
    [7] RAUBITZEK S, NEUBAUER T. A fractal interpolation approach to improve neural network predictions for difficult time series data[J]. Expert Systems with Applications, 2021, 169: 114474. doi: 10.1016/j.eswa.2020.114474
    [8] LAHRECHE A, BOUCHEHAM B. A fast and accurate similarity measure for long time series classification based on local extrema and dynamic time warping[J]. Expert Systems with Applications, 2021, 168: 1114374.
    [9] TAYALI H A, TOLUN S. Dimension reduction in mean-variance portfolio optimization[J]. Expert Systems with Applications, 2018, 92: 161-169. doi: 10.1016/j.eswa.2017.09.009
    [10] 李海林, 杨丽彬. 时间序列数据降维和特征表示方法[J]. 控制与决策, 2013, 28(11): 1718-1722.

    LI H L, YANG L B. Method of dimensionality reduction and feature representation for time series[J]. Control and Decision, 2013, 28(11): 1718-1722(in Chinese).
    [11] LIU C H, JAJA J, PESSOA L. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data[J]. Neuroimage, 2018, 169(4): 363-373.
    [12] 吴虎胜, 张凤鸣, 钟斌. 基于二维奇异值分解的多元时间序列相似匹配方法[J]. 电子与信息学报, 2014, 36(4): 847-854.

    WU H S, ZHANG F M, ZHONG B. Similar pattern matching method for multivariate time series based on two-dimensional singular value decomposition[J]. Journal of Electronics & Information Technology, 2014, 36(4): 847-854(in Chinese).
    [13] 周大镯, 吴晓丽, 闫红灿. 一种高效的多变量时间序列相似查询算法[J]. 计算机应用, 2008, 28(10): 2541-2543.

    ZHOU D Z, WU X L, YAN H C. An efficient similarity search for multivariate time series[J]. Journal of Computer Applications, 2008, 28(10): 2541-2543(in Chinese).
    [14] 李正欣, 郭建胜, 惠晓滨, 等. 基于共同主成分的多元时间序列降维方法[J]. 控制与决策, 2013, 28(4): 531-536. doi: 10.13195/j.cd.2013.04.54.lizhx.002

    LI Z X, GUO J S, HUI X B, et al. Dimension reduction method for multivariate time series based on common principal component[J]. Control and Decision, 2013, 28(4): 531-536(in Chinese). doi: 10.13195/j.cd.2013.04.54.lizhx.002
    [15] LI H L. Accurate and efficient classification based on common principal components analysis for multivariate time series[J]. Neurocomputing, 2016, 171: 744-753. doi: 10.1016/j.neucom.2015.07.010
    [16] HE H, TAN Y H. Unsupervised classification of multivariate time series using VPCA and fuzzy clustering with spatial weighted matrix distance[J]. IEEE Transactions on Cybernetics, 2020, 50(3): 1096-1105. doi: 10.1109/TCYB.2018.2883388
    [17] SUNDARARAJAN R R. Principal component analysis using frequency components of multivariate time series[J]. Computational Statistics & Data Analysis, 2021, 157: 107164.
    [18] DONG Y N, QIN S J, BOYD S P. Extracting a low-dimensional predictable time series[J]. Optimization and Engineering, 2022, 23(2): 1189-1214. doi: 10.1007/s11081-021-09643-x
    [19] 李海林. 基于变量相关性的多元时间序列特征表示[J]. 控制与决策, 2015, 30(3): 441-447.

    LI H L. Feature representation of multivariate time series based on correlation among variables[J]. Control and Decision, 2015, 30(3): 441-447(in Chinese).
    [20] 李海林, 梁叶. 基于关键形态特征的多元时间序列降维方法[J]. 控制与决策, 2020, 35(3): 629-636.

    LI H L, LIANG Y. Dimension reduction for multivariate time series based on crucial shape features[J]. Control and Decision, 2020, 35(3): 629-636(in Chinese).
    [21] WENG X Q, SHEN J Y. Classification of multivariate time series using locality preserving projections[J]. Knowledge-Based Systems, 2008, 21(7): 581-587. doi: 10.1016/j.knosys.2008.03.027
    [22] WENG X Q. Classification of multivariate time series using supervised locality preserving projection[C]//Proceedings of the 3rd International Conference on Intelligent System Design and Engineering Applications. Piscataway: IEEE Press, 2013: 428-431.
    [23] 董红玉, 陈晓云. 基于奇异值分解和判别局部保持投影的多变量时间序列分类[J]. 计算机应用, 2014, 34(1): 239-243.

    DONG H Y, CHEN X Y. Classification of multivariate time series classification based on singular value decomposition and discriminant locality preserving projection[J]. Journal of Computer Applications, 2014, 34(1): 239-243(in Chinese).
    [24] ZHAO J H, SUN F, LIANG H Y, et al. Pseudo bidirectional linear discriminant analysis for multivariate time series classification[J]. IEEE Access, 2021, 9: 88674-88684. doi: 10.1109/ACCESS.2021.3089839
    [25] YAN S C, XU D, ZHANG B Y, et al. Graph embedding and extensions: A general framework for dimensionality reduction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51. doi: 10.1109/TPAMI.2007.250598
    [26] CHEN J H, WAN Y, WANG X Y, et al. Learning-based shapelets discovery by feature selection for time series classification[J]. Applied Intelligence, 2022, 52(8): 9460-9475. doi: 10.1007/s10489-021-03009-7
    [27] LIU Y, GAO J E, CAO W, et al. A hybrid double-density dual-tree discrete wavelet transformation and marginal Fisher analysis for scoring sleep stages from unprocessed single-channel electroencephalogram[J]. Quantitative Imaging in Medicine and Surgery, 2020, 10(3): 766-778. doi: 10.21037/qims.2020.02.01
    [28] 李峰, 王正群, 周中侠, 等. 半监督的稀疏保持二维边界Fisher分析降维算法[J]. 计算机辅助设计与图形学学报, 2014, 26(6): 923-931.

    LI F, WANG Z Q, ZHOU Z X, et al. Semi-supervised sparsity preserving two-dimensional marginal fisher analysis dimensionality reduction algorithm[J]. Journal of Computer-Aided Design & Computer Graphics, 2014, 26(6): 923-931(in Chinese).
    [29] WANG Z, ZHANG L, WANG B J. Sparse modified marginal Fisher analysis for facial expression recognition[J]. Applied Intelligence, 2019, 49(7): 2659-2671. doi: 10.1007/s10489-018-1388-7
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  1296
  • HTML全文浏览量:  8
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-04-26
  • 整期出版日期:  2023-12-31

目录

    /

    返回文章
    返回
    常见问答