留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于改进ADRC的四旋翼姿态控制器设计

鄢化彪 徐炜宾 黄绿娥

鄢化彪,徐炜宾,黄绿娥. 基于改进ADRC的四旋翼姿态控制器设计[J]. 北京航空航天大学学报,2023,49(12):3283-3292 doi: 10.13700/j.bh.1001-5965.2022.0129
引用本文: 鄢化彪,徐炜宾,黄绿娥. 基于改进ADRC的四旋翼姿态控制器设计[J]. 北京航空航天大学学报,2023,49(12):3283-3292 doi: 10.13700/j.bh.1001-5965.2022.0129
YAN H B,XU W B,HUANG L E. Design of quadrotor attitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3283-3292 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0129
Citation: YAN H B,XU W B,HUANG L E. Design of quadrotor attitude controller based on improved ADRC[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3283-3292 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0129

基于改进ADRC的四旋翼姿态控制器设计

doi: 10.13700/j.bh.1001-5965.2022.0129
基金项目: 国家自然科学基金(11765008);江西省青年科学基金(20161BA216128)
详细信息
    通讯作者:

    E-mail:9320080310@jxust.edu.cn

  • 中图分类号: V249.1;TP273

Design of quadrotor attitude controller based on improved ADRC

Funds: National Natural Science Foundation of China (11765008); Youth Science Foundation of Jiangxi Province (20161BA216128)
More Information
  • 摘要:

    针对四旋翼无人机姿态自抗扰控制(ADRC)系统应对复杂干扰时,基于传统fal函数设计的扩张状态观测器(ESO)抗扰动能力不足、易产生抖振的问题,提出一种改进型ADRC并用于四旋翼姿态控制。基于正弦函数构建一种新型光滑非线性xfal函数以改进ESO,利用Lyapunov函数对改进ESO的稳定性进行证明。通过仿真平台,与其他ADRC进行比较。实验结果表明:改进型ADRC和标准ADRC相比,当四旋翼无人机不受干扰时,在其抖振区间内,俯仰角均方误差降低了约38.7%;当四旋翼无人机分别受到连续干扰、突发干扰、复杂干扰时,在各自计算区间内,俯仰角均方误差分别降低了约78.4%、80.2%、83.3%。因此,改进型ADRC在有效减小抖振的同时,还具备优良的抗干扰能力。

     

  • 图 1  四旋翼姿态控制框图

    Figure 1.  Block diagram of the quadrotor attitude control

    图 2  fal函数的曲线

    Figure 2.  Curves of fal function

    图 3  fal和xfal函数曲线比较

    Figure 3.  Comparison of fal and xfal function curves

    图 4  fal和xfal函数误差增益图

    Figure 4.  Error gain plot of fal and xfal function

    图 5  无干扰下响应曲线

    Figure 5.  Response curves without disturbance

    图 6  连续干扰下响应曲线

    Figure 6.  Response curves under continuous disturbance

    图 7  突发干扰下响应曲线

    Figure 7.  Response curves under sudden disturbance

    图 8  白噪声干扰下响应曲线

    Figure 8.  Response curves under white noise disturbance

    图 9  综合干扰下响应曲线

    Figure 9.  Response curves under combined disturbance

    表  1  四旋翼无人机仿真参数

    Table  1.   Four-rotor UAV simulation parameters

    参数数值
    质量m/kg0.057
    力臂d/m0.059
    转动惯量Ix/(kg·m2)4.45×10−4
    转动惯量Iy/(kg·m2)4.29×10−4
    转动惯量Iz/(kg·m2)8.6×10−4
    油门-拉力系数${C'_{{T} } }$/N3.8×10−4
    油门$\sigma $0~1000
    下载: 导出CSV

    表  2  TD和NLSEF参数

    Table  2.   TD and NLSEF parameters

    类型rh${\alpha _1}$${\alpha _2}$${\beta _{01}}$${\beta _{02}}$$\delta $
    TD8000.005
    NLSEF0.750.758040.005
    下载: 导出CSV

    表  3  ESO参数

    Table  3.   ESO parameters

    参数falfalngalnxfal
    b040404040
    ${\alpha _1}$0.50.50.4
    ${\alpha _2}$0.250.250.35
    ${\beta _1}$180180180180
    ${\beta _2}$2160216021602160
    ${\beta _3}$24000240002400024000
    h0.0050.0050.0050.005
    $\delta $0.0250.025
    ${K_1}$3
    ${K_2}$4
    R12
    R22
    下载: 导出CSV

    表  4  无人机在各个干扰下的均方误差

    Table  4.   Mean square error of UAV under various disturbances

    控制器无干扰正弦波方波白噪声综合干扰
    fal0.001632.09686.93850.26217.1904
    faln0.001632.09687.28800.2574*
    galn0.000980.4564*0.2456*
    xfal0.001000.45421.37470.29101.1975
    注:“*”表示失控,无均方差。
    下载: 导出CSV
  • [1] 李俊芳, 李峰, 吉月辉, 等. 四旋翼无人机轨迹稳定跟踪控制[J]. 控制与决策, 2020, 35(2): 349-356. doi: 10.13195/j.kzyjc.2018.0639

    LI J F, LI F, JI Y H, et al. Trajectory stable tracking control of quadrotor UAV[J]. Control and Decision, 2020, 35(2): 349-356(in Chinese). doi: 10.13195/j.kzyjc.2018.0639
    [2] PETRLÍK M, BÁČA T, HEŘT D, et al. A robust UAV system for operations in a constrained environment[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 2169-2176. doi: 10.1109/LRA.2020.2970980
    [3] ZHOU L H, ZHANG J Q, DOU J X, et al. A fuzzy adaptive backstepping control based on mass observer for trajectory tracking of a quadrotor UAV[J]. International Journal of Adaptive Control and Signal Processing, 2018, 32(12): 1675-1693. doi: 10.1002/acs.2937
    [4] QI G Y, HUANG D H. Modeling and dynamical analysis of a small-scale unmanned helicopter[J]. Nonlinear Dynamics, 2019, 98(3): 2131-2145. doi: 10.1007/s11071-019-05313-x
    [5] JITHU G, JAYASREE P R. Quadrotor modelling and control[C]// 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). Piscataway: IEEE Press, 2016: 1167-1172.
    [6] NGUYEN K D, HA C. Design of synchronization controller for the station-keeping hovering mode of quad-rotor unmanned aerial vehicles[J]. International Journal of Aeronautical and Space Sciences, 2019, 20(1): 228-237. doi: 10.1007/s42405-018-0115-2
    [7] 华和安, 方勇纯, 钱辰, 等. 基于线性滤波器的四旋翼无人机强化学习控制策略[J]. 电子与信息学报, 2021, 43(12): 3407-3417. doi: 10.11999/JEIT210251

    HUA H A, FANG Y C, QIAN C, et al. Reinforcement learning control strategy of quadrotor unmanned aerial vehicles based on linear filter[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3407-3417(in Chinese). doi: 10.11999/JEIT210251
    [8] SAIF A W A, ALIYU A, AL DHAIFALLAH M, et al. Decentralized backstepping control of a quadrotor with tilted-rotor under wind gusts[J]. International Journal of Control, Automation and Systems, 2018, 16(5): 2458-2472. doi: 10.1007/s12555-017-0099-x
    [9] 张钊, 杨忠, 段雨潇, 等. 主动变形四旋翼自抗扰飞行控制方法[J]. 控制理论与应用, 2021, 38(4): 444-456. doi: 10.7641/CTA.2020.00344

    ZHANG Z, YANG Z, DUAN Y X, et al. Active disturbance rejection control method for actively deformable quadrotor[J]. Control Theory & Applications, 2021, 38(4): 444-456(in Chinese). doi: 10.7641/CTA.2020.00344
    [10] 唐志勇, 马福源, 裴忠才. 四旋翼的改进PSO-RBF神经网络自适应滑模控制[J]. 北京航空航天大学学报, 2023, 49(7): 1563-1572. doi: 10.13700/j.bh.1001-5965.2021.0477

    TANG Z Y, MA F Y, PEI Z C. Improved PSO-RBF neural network adaptive sliding mode control for quadrotor systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(7): 1563-1572(in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0477
    [11] 高俊山, 段立勇, 邓立为. 四旋翼无人机抗干扰轨迹跟踪控制[J]. 控制与决策, 2021, 36(2): 379-386. doi: 10.13195/j.kzyjc.2019.0875

    GAO J S, DUAN L Y, DENG L W. Anti-interference trajectory tracking control of quadrotor UAV[J]. Control and Decision, 2021, 36(2): 379-386(in Chinese). doi: 10.13195/j.kzyjc.2019.0875
    [12] HAN J Q. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906. doi: 10.1109/TIE.2008.2011621
    [13] 张勇, 陈增强, 张兴会, 等. 四旋翼无人机系统PD-ADRC串级控制[J]. 系统工程与电子技术, 2018, 40(9): 2055-2061. doi: 10.3969/j.issn.1001-506X.2018.09.23

    ZHANG Y, CHEN Z Q, ZHANG X H, et al. PD-ADRC cascade control for quadrotor system[J]. Systems Engineering and Electronics, 2018, 40(9): 2055-2061(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.09.23
    [14] 王术波, 韩宇, 陈建, 等. 基于ADRC迭代学习控制的四旋翼无人机姿态控制[J]. 航空学报, 2020, 41(12): 324112.

    WANG S B, HAN Y, CHEN J, et al. Active disturbance rejection control of UAV attitude based on iterative learning control[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 324112(in Chinese).
    [15] 陈增强, 李毅, 孙明玮, 等. 四旋翼无人飞行器ADRC-GPC控制[J]. 哈尔滨工业大学学报, 2016, 48(9): 176-180. doi: 10.11918/j.issn.0367-6234.2016.09.030

    CHEN Z Q, LI Y, SUN M W, et al. ADRC-GPC control of a quad-rotor unmanned aerial vehicle[J]. Journal of Harbin Institute of Technology, 2016, 48(9): 176-180(in Chinese). doi: 10.11918/j.issn.0367-6234.2016.09.030
    [16] 张勇, 陈增强, 张兴会, 等. 基于自抗扰的四旋翼无人机动态面姿态控制[J]. 吉林大学学报(工学版), 2019, 49(2): 562-569. doi: 10.13229/j.cnki.jdxbgxb20171241

    ZHANG Y, CHEN Z Q, ZHANG X H, et al. Dynamic surface attitude control of quad-rotor UAV based on ADRC[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(2): 562-569(in Chinese). doi: 10.13229/j.cnki.jdxbgxb20171241
    [17] 石嘉, 裴忠才, 唐志勇, 等. 改进型自抗扰四旋翼无人机控制系统设计与实现[J]. 北京航空航天大学学报, 2021, 47(9): 1823-1831. doi: 10.13700/j.bh.1001-5965.2020.0333

    SHI J, PEI Z C, TANG Z Y, et al. Design and realization of an improved active disturbance rejection quadrotor UAV control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(9): 1823-1831(in Chinese). doi: 10.13700/j.bh.1001-5965.2020.0333
    [18] 陈志旺, 张子振, 曹玉洁. 自抗扰fal函数改进及在四旋翼姿态控制中的应用[J]. 控制与决策, 2018, 33(10): 1901-1907. doi: 10.13195/j.kzyjc.2017.0606

    CHEN Z W, ZHANG Z Z, CAO Y J. Fal function improvement of ADRC and its application in quadrotor aircraft attitude control[J]. Control and Decision, 2018, 33(10): 1901-1907(in Chinese). doi: 10.13195/j.kzyjc.2017.0606
    [19] 杨文奇, 卢建华, 姜旭, 等. 基于改进ESO的四旋翼姿态自抗扰控制器设计[J]. 系统工程与电子技术, 2022, 44(12): 3792-3799. doi: 10.12305/j.issn.1001-506X.2022.12.24

    YANG W Q, LU J H, JIANG X, et al. Design of quadrotor attitude active disturbance rejection controller based on improved ESO[J]. Systems Engineering and Electronics, 2022, 44(12): 3792-3799(in Chinese). doi: 10.12305/j.issn.1001-506X.2022.12.24
    [20] 杨盛毅, 唐胜景, 刘超, 等. 基于动力系统模型的四旋翼推力估计方法[J]. 北京理工大学学报, 2016, 36(6): 558-562. doi: 10.15918/j.tbit1001-0645.2016.06.002

    YANG S Y, TANG S J, LIU C, et al. Thrust estimation of quadrotor based on propulsion system model[J]. Transactions of Beijing Institute of Technology, 2016, 36(6): 558-562(in Chinese). doi: 10.15918/j.tbit1001-0645.2016.06.002
    [21] 于洪国, 康忠健, 陈瑶. 基于双曲正切函数的二阶时变参数扩张状态观测器[J]. 控制理论与应用, 2016, 33(4): 530-534. doi: 10.7641/CTA.2016.50443

    YU H G, KANG Z J, CHEN Y. Time-varying parameter second-order extended state observer based on hyperbolic tangent function[J]. Control Theory & Applications, 2016, 33(4): 530-534(in Chinese). doi: 10.7641/CTA.2016.50443
    [22] 周涛. 基于反双曲正弦函数的扩张状态观测器[J]. 控制与决策, 2015, 30(5): 943-946. doi: 10.13195/j.kzyjc.2014.0316

    ZHOU T. Extended state observer based on inverse hyperbolic sine function[J]. Control and Decision, 2015, 30(5): 943-946(in Chinese). doi: 10.13195/j.kzyjc.2014.0316
    [23] ZHAO H X, CHEN S L, LI M. A sufficient condition for the stability of the third-order extended state observer[C]// Proceedings of the 32nd Chinese Control Conference. Piscataway: IEEE Press, 2013: 1526-1531.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1379
  • HTML全文浏览量:  18
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-08
  • 录用日期:  2022-07-02
  • 网络出版日期:  2022-07-13
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答