留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

旋转部件SGBEM-FEM耦合热弹性断裂分析

董雷霆 贺双新

董雷霆, 贺双新. 旋转部件SGBEM-FEM耦合热弹性断裂分析[J]. 北京航空航天大学学报, 2022, 48(9): 1702-1709. doi: 10.13700/j.bh.1001-5965.2022.0140
引用本文: 董雷霆, 贺双新. 旋转部件SGBEM-FEM耦合热弹性断裂分析[J]. 北京航空航天大学学报, 2022, 48(9): 1702-1709. doi: 10.13700/j.bh.1001-5965.2022.0140
DONG Leiting, HE Shuangxin. SGBEM-FEM coupling for thermoelastic fracture mechanics analysis of rotational components[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1702-1709. doi: 10.13700/j.bh.1001-5965.2022.0140(in Chinese)
Citation: DONG Leiting, HE Shuangxin. SGBEM-FEM coupling for thermoelastic fracture mechanics analysis of rotational components[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(9): 1702-1709. doi: 10.13700/j.bh.1001-5965.2022.0140(in Chinese)

旋转部件SGBEM-FEM耦合热弹性断裂分析

doi: 10.13700/j.bh.1001-5965.2022.0140
基金项目: 

航空科学基金 201909051001

详细信息
    通讯作者:

    董雷霆, E-mail: ltdong@buaa.edu.cn

  • 中图分类号: V214.1; TB125

SGBEM-FEM coupling for thermoelastic fracture mechanics analysis of rotational components

Funds: 

Aeronautical Science Foundation of China 201909051001

More Information
  • 摘要:

    旋转部件载荷复杂,易萌生裂纹,引发疲劳断裂失效。针对含裂纹受热旋转部件,在全局无裂纹区域使用有限元法(FEM),发挥其在大型结构仿真分析方面的优势;在裂纹附近局部子域使用对称伽辽金边界单元法(SGBEM),发挥其在结构断裂分析方面的优势。构造考虑旋转惯性载荷和热载荷影响的SGBEM超单元,该超单元刚度矩阵对称半正定,且施加的旋转惯性载荷和热载荷仅影响等效力向量,可实现与有限元刚度矩阵和力向量的直接装配,从而耦合求解旋转部件的热弹性断裂问题。采用构造的SGBEM超单元FEM耦合法计算了含裂纹受热旋转圆盘的应力强度因子,验证了该方法的有效性。

     

  • 图 1  热弹性体

    Figure 1.  Thermoelastic body

    图 2  SGBEM超单元FEM耦合求解流程

    Figure 2.  Process of SGBEM super element and FEM coupling solution

    图 3  局部子域边界网格和裂纹网格

    Figure 3.  Subdomain boundary mesh and crack mesh

    图 4  受热旋转圆盘

    Figure 4.  Rotational disk undergoing thermal loading

    图 5  ANSYS Workbench中圆盘和裂纹的有限元网格

    Figure 5.  Disk and crack FEM mesh used by ANSYS Workbench

    表  1  不同转速和温度下圆盘裂纹应力强度因子

    Table  1.   Stress intensity factors of crack in disk for different rotational speeds and temperature

    转速/(103 r·min-1) 系数k/103 应力强度因子/ 相对误差/%
    SGBEM超单元FEM耦合法 ANSYSWorkbench
    6 6 3.652 81 3.719 6 -1.80
    7 7 4.792 74 4.877 8 -1.74
    8 8 6.084 43 6.189 6 -1.70
    9 9 7.527 88 7.655 3 -1.66
    10 10 9.120 92 9.276 6 -1.68
    下载: 导出CSV
  • [1] 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8): 1371-1391. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201108002.htm

    CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8): 1371-1391(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201108002.htm
    [2] 陈博, 朱剑寒, 鲁辉军. 航空发动机涡轮叶片高周疲劳裂纹故障分析与思考[J]. 燃气涡轮试验与研究, 2020, 33(3): 33-36. doi: 10.3969/j.issn.1672-2620.2020.03.007

    CHEN B, ZHU J H, LU H J. Analysis and consideration for turbine blade high-cycle fatigue crack failure of aero-engine[J]. Gas Turbine Experiment and Research, 2020, 33(3): 33-36(in Chinese). doi: 10.3969/j.issn.1672-2620.2020.03.007
    [3] 马利丽, 何立强, 任伟峰. 航空发动机自由涡轮叶片裂纹故障分析[J]. 航空发动机, 2018, 44(6): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201806010.htm

    MA L L, HE L Q, REN W F. Blade crack fault analysis of aeroengine free turbine[J]. Aeroengine, 2018, 44(6): 54-58(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201806010.htm
    [4] 董雷霆, 周轩, 赵福斌, 等. 飞机结构数字孪生关键建模仿真技术[J]. 航空学报, 2021, 42(3): 023981. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202103012.htm

    DONG L T, ZHOU X, ZHAO F B, et al. Key technologies for modeling and simulation of airframe digital twin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 023981(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202103012.htm
    [5] 李其汉. 航空发动机结构完整性研究进展[J]. 航空发动机, 2014, 40(5): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201405001.htm

    LI Q H. Investigation progress on aeroengine structural integrity[J]. Aeroengine, 2014, 40(5): 1-6(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKFJ201405001.htm
    [6] 王勖成. 有限单元法[M]. 北京: 清华大学出版社, 2003: 1-8.

    WANG X C. Finite element method[M]. Beijing: Tsinghua University Press, 2003: 1-8(in Chinese).
    [7] 段静波, 李道奎, 雷勇军. 断裂力学分析的奇异有限元法研究综述[J]. 机械强度, 2012, 34(2): 262-269. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201202022.htm

    DUAN J B, LI D K, LEI Y J. Advances in singular finite element method for fracture mechanics analysis[J]. Journal of Mechanical Strength, 2012, 34(2): 262-269(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201202022.htm
    [8] 徐杰, 周迅, 陈文华, 等. 基于有限元法的表面疲劳裂纹扩展模拟[J]. 浙江理工大学学报, 2012, 29(1): 66-69. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201201014.htm

    XU J, ZHOU X, CHEN W H, et al. Simulation of fatigue crack growth of surface cracked plates by finite element method[J]. Journal of Zhejiang Sci-Tech University, 2012, 29(1): 66-69(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSG201201014.htm
    [9] BONNET M, MAIER G, POLIZZOTTO C. Symmetric Galerkin boundary element methods[J]. Applied Mechanics Reviews, 1998, 51(11): 669-704.
    [10] SUTRADHAR A, PAULINO G H, GRAY L J. Symmetric Galerkin boundary element method[M]. Berlin: Springer-Verlag, 2008: 171-196.
    [11] LI S, MEAR M E, XIAO L. Symmetric weak-form integral equation method for three-dimensional fracture analysis[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 151(3-4): 435-459.
    [12] NIKISHKOV G P. Accuracy of quarter-point element in modeling crack-tip fields[J]. Computer Modeling in Engineering and Sciences, 2013, 93(5): 335-361.
    [13] FRANGI A. Fracture propagation in 3D by the symmetric Galerkin boundary element method[J]. International Journal of Fracture, 2002, 116(4): 313-330.
    [14] FRANGI A. Regularization of boundary element formulations by the derivative transfer method[M]//BREBBIA C A, ALIABADI M H. Singular integrals in boundary element methods[M]. Southampton: Computational Mechanics Publications, 1998: 125-164.
    [15] HAN Z, ATLURI S. SGBEM (for cracked local subdomain): FEM (for uncracked global structure) alternating method for analyzing 3D surface cracks and their fatigue-growth[J]. Computer Modeling in Engineering & Sciences, 2002, 3(6): 699-716.
    [16] DONG L T, ATLURI S N. SGBEM (using non-hyper-singular traction BIE), and super elements, for non-collinear fatigue-growth analyses of cracks in stiffened panels with composite-patch repairs[J]. Computer Modeling in Engineering & Sciences, 2012, 89(5): 41-458.
    [17] HAN Z, ATLURI S. On simple formulations of weakly-singular traction & displacement BIE, and their solutions through petrov-Galerkin approaches[J]. Computer Modeling in Engineering & Sciences, 2003, 4(1): 5-20.
    [18] HE S X, WANG C Y, ZHOU X, et al. Weakly singular symmetric Galerkin boundary element method for fracture analysis of three-dimensional structures considering rotational inertia and gravitational forces[J]. Computer Modeling in Engineering & Sciences, 2022, 131(3): 1857-1882.
    [19] DONG L T, ATLURI S N. Fracture & fatigue analyses: SGBEM-FEM or XFEM? Part 1: 2D structures[J]. Computer Modeling in Engineering & Sciences, 2013, 90(2): 91-146.
    [20] DONG L T, ATLURI S N. Fracture & fatigue analyses: SGBEM-FEM or XFEM? Part 2: 3D solids[J]. Computer Modeling in Engineering & Sciences, 2013, 90(5): 379-413.
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  110
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 录用日期:  2022-04-08
  • 网络出版日期:  2022-04-20

目录

    /

    返回文章
    返回
    常见问答