留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向柔性扑翼翼面形状和运动参数的优化设计

吴越 谢长川 杨超

吴越,谢长川,杨超. 面向柔性扑翼翼面形状和运动参数的优化设计[J]. 北京航空航天大学学报,2023,49(12):3311-3320 doi: 10.13700/j.bh.1001-5965.2022.0146
引用本文: 吴越,谢长川,杨超. 面向柔性扑翼翼面形状和运动参数的优化设计[J]. 北京航空航天大学学报,2023,49(12):3311-3320 doi: 10.13700/j.bh.1001-5965.2022.0146
WU Y,XIE C C,YANG C. Optimal design of shape and motion parameters of a flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3311-3320 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0146
Citation: WU Y,XIE C C,YANG C. Optimal design of shape and motion parameters of a flapping wing[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3311-3320 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0146

面向柔性扑翼翼面形状和运动参数的优化设计

doi: 10.13700/j.bh.1001-5965.2022.0146
详细信息
    通讯作者:

    E-mail:xiechangc@buaa.edu.cn

  • 中图分类号: V222;TB553

Optimal design of shape and motion parameters of a flapping wing

More Information
  • 摘要:

    扑翼机具备仿鸟类的外形,能够隐蔽执行侦查监视任务,合理设计翼面形状和运动过程能够提升扑翼飞行气动效应。当前针对扑翼翼面设计问题,缺乏考虑流固耦合效应的优化设计研究,还未在设计阶段考虑改变柔性翼面形状对扑翼气动特性的影响,且现有研究只涉及对翼面形状或扑翼运动的单因素分析讨论,缺乏综合2种设计因素的优化设计。针对定速前飞的柔性扑翼翼面进行气动特性优化设计,采用Newmark-β方法求解结构响应,并与现成软件求解器的计算结果进行对比,验证结构动力学计算方法的准确性,用非定常涡格法(UVLM)计算扑翼气动力,搭建了高效的流固耦合计算框架。由于扑翼复杂设计空间具有多个局部最优点,采用与并行计算结合的细分矩形(DIRECT)全局优化算法,提高计算效率,对柔性扑翼翼面的形状和运动参数进行迭代优化,确定最大化推进效率的设计参数,并与刚性模型优化结果进行对比。结果表明:柔性扑翼翼面形状和运动优化设计能够获得更高的推进效率,与只采用形状优化相比最优推进效率提高了5.6%,比刚性模型优化结果提高了27.0%。

     

  • 图 1  自由尾涡模型及其环量分布

    Figure 1.  Free tail vortex model and its circulation volume distribution

    图 2  加速尾涡模型及其环量分布

    Figure 2.  Accelerated tail vortex model and its circulation volume distribution

    图 3  流固耦合气动弹性框架示意图

    Figure 3.  Schematic of aeroelastic framework for fluid-structure cupling

    图 4  结合并行计算方法的DIRECT优化算法循环结构

    Figure 4.  Loop structure of DIRECT optimization algorithm combined with parallel computing method

    图 5  变参数翼面形状建模方法

    Figure 5.  Modeling method of variable parameter airfoil layout

    图 6  扑动和俯仰耦合的扑翼运动

    Figure 6.  Flutter and pitch-coupled flapping wing motion

    图 7  结构动力学验证模型

    Figure 7.  Validation model for structural dynamics

    图 8  翼尖z向位移

    Figure 8.  Displacement in z-axis at wingtip

    图 9  流固耦合验证模型

    Figure 9.  Validation model for fluid-structure coupling

    图 10  临界风速附近的翼尖加速度

    Figure 10.  Wingtip acceleration near critical wind speed

    图 11  机翼平面形状和薄翼型

    Figure 11.  Wing planform and thin airfoil

    图 12  最大推进效率随优化迭代次数的变化

    Figure 12.  The maximum propulsion efficiency with number of optimization iteration

    图 13  机翼平面形状和薄翼型

    Figure 13.  Wing planforms and thin airfoils

    图 14  刚性翼面和柔性翼面的压力分布

    Figure 14.  Pressure distribution on rigid and flexible wing

    图 15  完整周期内沿展向分布的推力和升力

    Figure 15.  Spanwise lift and thrust distributions in a complete cycle

    图 16  升力系数和推力系数

    Figure 16.  Lift and thrust coefficients

    表  1  结构动力学验证材料参数

    Table  1.   Material parameters for structural dynamics validation

    类型密度/(kg·m−3)泊松比弹性模量/GPa
    主梁材料27000.34 70
    翼肋材料18000.3 210
    下载: 导出CSV

    表  2  优化翼面的初始参数

    Table  2.   Initial parameters of wing model optimization

    半展长/
    m
    平均弦长/
    m
    根梢比1/4弦线后
    掠角/(°)
    密度/
    (kg·m−3
    弹性模量/
    GPa
    1.080.16487.244012005.2
    下载: 导出CSV

    表  3  2种优化问题的参数组合

    Table  3.   Set of parameters in two cases of optimization

    项目形状参数/mm运动参数/(°)
    形状优化$0\; \leqslant {x_1} \leqslant 30\;$$ {\theta _0}{\rm{ = }}{3.4} $
    $0\; \leqslant {x_2} \leqslant 10\;$${\theta _{\rm{a}}}{\rm{ = } }{12}$
    综合优化$- 30\; \leqslant {x_3} \leqslant 0\;$$ {3} \leqslant {\theta _0} \leqslant {5} $
    $- 10\; \leqslant {x_4} \leqslant 0\;$${10} \leqslant {\theta _{\rm{a}}} \leqslant {15}$
    下载: 导出CSV

    表  4  以最大推进效率为目标的优化结果

    Table  4.   Optimal results for maximum propulsion efficiency

    项目推进效率$ \eta $形状参数/mm角度/(°)
    $ {x_1} $$ {x_2} $$ {x_3} $$ {x_4} $$ {\theta _0} $${\theta _{\rm{a}}}$
    形状优化刚性翼面0.14617.10.0−8.8−0.1
    柔性翼面0.178 7.90.0−2.3−0.1
    综合优化刚性翼面0.14815.00.1−8.3−0.23.3512.13
    柔性翼面0.18812.70.0−1.0 0.03.3915.00
    下载: 导出CSV
  • [1] KEENNON M, KLINGEBIEL K, WON H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle[C]// Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012.
    [2] RAZAK N A, DIMITRIADIS G. Experimental study of wings undergoing active root flapping and pitching[J]. Journal of Fluids and Structures, 2014, 49: 687-704. doi: 10.1016/j.jfluidstructs.2014.06.009
    [3] NICK T P S, TAI Y C, HO C M, et al. Microbat: A palm-sized electrically powered ornithopter[C]//Proceedings of the NASA/JPL Workshop on Biomorphic Robotics. Washington, D. C. : NASA, 2001.
    [4] SRIGRAROM S, CHAN W L. Flow field of flapping albatross-like wing and sound at low reynolds number[J]. Journal of Unmanned System Technology, 2013, 1(2): 1-2.
    [5] GHOMMEM M, HAJJ M R, MOOK D T, et al. Global optimization of actively morphing flapping wings[J]. Journal of Fluids and Structures, 2012, 33: 210-228. doi: 10.1016/j.jfluidstructs.2012.04.013
    [6] GHOMMEM M, COLLIER N, NIEMI A H, et al. On the shape optimization of flapping wings and their performance analysis[J]. Aerospace Science and Technology, 2014, 32(1): 274-292. doi: 10.1016/j.ast.2013.10.010
    [7] LARIJANI R. A non-linear aeroelastic model for the study of flapping-wing flight[D]. Toronto : University of Toronto, 2000.
    [8] REICHERT T. Kinematic optimization in birds, bats and ornithopters[D]. Toronto: University of Toronto, 2011.
    [9] ZHU Q A. Numerical simulation of a flapping foil with chordwise or spanwise flexibility[J]. AIAA Journal, 2007, 45(10): 2448-2457. doi: 10.2514/1.28565
    [10] KAMAKOTI R, SHYY W. Fluid-structure interaction for aeroelastic applications[J]. Progress in Aerospace Sciences, 2004, 40(8): 535-558. doi: 10.1016/j.paerosci.2005.01.001
    [11] GABLONSKY J M. Modifications of the DIRECT algorithm [D]. Raleigh: North Carolina State University, 2001.
    [12] WU Y E, XIE C C, MENG Y, et al. Kinematic optimization of a flexible wing undergoing flapping and pitching[J]. Shock and Vibration, 2021, 2021: 1-14.
    [13] KATZ J, PLOTKIN A. Low speed aerodynamics: From wing theory to panel methods [M]. Singapore: Mcgraw-Hill Press, 1991.
    [14] XIE C C, YANG C. Surface splines generalization and large deflection interpolation[J]. Journal of Aircraft, 2007, 44(3): 1024-1026. doi: 10.2514/1.24571
    [15] GHOMMEM M, COLLIER N, NIEMI A H, et al. Shape optimisation and performance analysis of flapping wings[C]// Proceedings of the Eighth International Conference on Engineering Computational Technology. Stirlingshire: Civil-Comp Press, 2012.
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  26
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 录用日期:  2022-04-19
  • 网络出版日期:  2022-04-29
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答