留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维连通图的无人机快速三维路径规划

潘登 郑建华 高东

潘登,郑建华,高东. 基于二维连通图的无人机快速三维路径规划[J]. 北京航空航天大学学报,2023,49(12):3419-3431 doi: 10.13700/j.bh.1001-5965.2022.0147
引用本文: 潘登,郑建华,高东. 基于二维连通图的无人机快速三维路径规划[J]. 北京航空航天大学学报,2023,49(12):3419-3431 doi: 10.13700/j.bh.1001-5965.2022.0147
PAN D,ZHENG J H,GAO D. Fast 3D path planning of UAV based on 2D connected graph[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3419-3431 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0147
Citation: PAN D,ZHENG J H,GAO D. Fast 3D path planning of UAV based on 2D connected graph[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3419-3431 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0147

基于二维连通图的无人机快速三维路径规划

doi: 10.13700/j.bh.1001-5965.2022.0147
详细信息
    通讯作者:

    E-mail: gaodong@nssc.ac.cn

  • 中图分类号: V279

Fast 3D path planning of UAV based on 2D connected graph

More Information
  • 摘要:

    针对复杂真实环境下无人机三维路径规划解算速度慢的问题,提出一种基于二维连通图的快速三维路径规划方法。首先解析真实地理环境的地形特征和建筑要素,构建基于数字高程模型(DEM)的多层次等效三维数字地图;在此基础上,经过无人机可行空域到二维连通图的转化、连通图中的路径规划及路径的三维化与优化,快速获得一条可执行的三维路径。针对连通图中的全局路径规划,设计了一种基于步长地图的变步长稀疏A*算法,在保证路径质量的同时有效降低路径搜索的时间;针对连通图中的局部路径规划,提出一种基于障碍预测的随机路标图(PRM)实时路径重规划算法,以满足无人机的实时性避障需求。分别在山地环境和城市环境中进行仿真飞行,结果表明:所提方法能够有效降低三维路径规划的解算难度,在短时间内完成复杂环境下不同尺度和需求的路径规划,全局路径规划算法同比三维A*算法和基于二维连通图的二维A*算法搜索时间分别降低了99%和95%,局部路径重规划算法能够在1 s的单次采样周期内完成路径重规划,实时躲避未知障碍物,保证飞行过程的安全。

     

  • 图 1  规则格网模型DEM的示意图

    Figure 1.  Schematic diagram of DEM of regular grid model

    图 2  某区域DEM还原地图

    Figure 2.  DEM-reduced map of a region

    图 3  DXF中“buildings”图层示意图

    Figure 3.  Schematic diagram of “buildings”layer in DXF files

    图 4  “bulidings”图层转化为DEM地图示意图

    Figure 4.  Schematic diagram of converting “buildings” layer to DEM map

    图 5  MAP2图层示意图

    Figure 5.  Schematic diagram of MAP2 layer

    图 6  等效三维地图

    Figure 6.  Equivalent 3D map

    图 7  本文方法流程

    Figure 7.  Flow chart of proposed method

    图 8  生成二维连通图示意图

    Figure 8.  Schematic diagram of generating 2D connectivity diagram

    图 9  变步长示意图

    Figure 9.  Schematic diagram of variable step size

    图 10  转化为三维路径的示意图

    Figure 10.  Schematic diagram of converting to 3D path

    图 11  路径修剪示意图

    Figure 11.  Schematic diagram of path pruning

    图 12  基于二维连通图的局部路径重规划流程

    Figure 12.  Flow chart of path replanning based on 2D connected graph

    图 13  障碍预测示意图

    Figure 13.  Schematic diagram of obstacle prediction

    图 14  重规划区域示意图

    Figure 14.  Schematic diagram of replanning area

    图 15  连通图中路径规划结果对比

    Figure 15.  Comparison of path planning results in connectivity graph

    图 16  三维A*算法和本文算法对比

    Figure 16.  Comparison of 3D A* algorithm and proposed algorithm

    图 17  山地场景的全局路径规划

    Figure 17.  Global path planning in mountain scenes

    图 18  山地场景的路径重规划

    Figure 18.  Path replanning in mountain scenes

    图 19  城市场景的全局路径规划

    Figure 19.  Global path planning in urban scenes

    图 20  三维路径优化过程

    Figure 20.  The process of 3D path optimization

    图 21  城市场景的路径重规划

    Figure 21.  Path replanning in urban scenes

    表  1  DXF文件中楼房建筑的部分组码

    Table  1.   Partial grouping codes of “buildings ”layer in DXF files

    组码说明
    0图元类型(网格图元MESH)
    8图层名(buildings)
    100子类标记
    920级顶点数
    10顶点位置x
    20顶点位置y
    30顶点位置z
    下载: 导出CSV

    表  2  二维路径规划算法对比

    Table  2.   Comparison of 2D path planning algorithms

    规划算法参数设置路径长度/pix规划时间/s
    A*算法步长1像素918.180010.9231
    Bi-RRT算法步长20像素1083.90880.0885
    VORONOI算法1122.69810.1100
    PRM算法采样点数2001076.29624.3746
    GA种群数200,代数3001579.142671.7549
    本文算法步长1~20像素950.22140.3706
    下载: 导出CSV

    表  3  三维路径规划算法对比

    Table  3.   Comparison of 3D path planning algorithms

    规划算法修剪路径长度/像素规划时间
    /s
    三维A*算法223.443329.9670
    三维A*算法214.4229330.2463
    本文算法295.81790.910911
    本文算法205.66100.988584
    下载: 导出CSV

    表  4  山地场景的全局路径规划

    Table  4.   Global path planning in mountain scenes

    路线编号终点坐标/像素路径长度/像素规划时间
    /s
    1(630,350,270)710.94181.0469
    2(140,330,300)464.02161.9923
    3(630,70,250)576.67480.8638
    下载: 导出CSV

    表  5  城市场景的全局路径规划

    Table  5.   Global path planning in urban scenes

    路线编号终点坐标/像素路径长度/像素规划时间/s
    1(1200,730,55)1408.03885.2401
    2(530,600,95)773.12401.6845
    3(145,705,160)694.69930.6461
    下载: 导出CSV
  • [1] 张宏宏, 甘旭升, 李双峰, 等. 复杂低空环境下考虑区域风险评估的无人机航路规划[J]. 仪器仪表学报, 2021, 42(1): 257-266. doi: 10.19650/j.cnki.cjsi.J2007192

    ZHANG H H, GAN X S, LI S F, et al. UAV route planning considering regional risk assessment under complex low altitude environment[J]. Chinese Journal of Scientific Instrument, 2021, 42(1): 257-266(in Chinese). doi: 10.19650/j.cnki.cjsi.J2007192
    [2] 张广林, 胡小梅, 柴剑飞, 等. 路径规划算法及其应用综述[J]. 现代机械, 2011(5): 85-90. doi: 10.3969/j.issn.1002-6886.2011.05.031

    ZHANG G L, HU X M, CHAI J F, et al. Summary of path planning algorithm and its application[J]. Modern Machinery, 2011(5): 85-90(in Chinese). doi: 10.3969/j.issn.1002-6886.2011.05.031
    [3] WANG H L, LYU W T, YAO P, et al. Three-dimensional path planning for unmanned aerial vehicle based on interfered fluid dynamical system[J]. Chinese Journal of Aeronautics, 2015, 28(1): 229-239. doi: 10.1016/j.cja.2014.12.031
    [4] 杜云, 彭瑜, 邵士凯, 等. 基于改进粒子群优化的多无人机协同航迹规划[J]. 科学技术与工程, 2020, 20(32): 13258-13264. doi: 10.3969/j.issn.1671-1815.2020.32.025

    DU Y, PENG Y, SHAO S K, et al. Cooperative path planning of multi-unmanned aerial vehicle based on improved particle swarm optimization[J]. Science Technology and Engineering, 2020, 20(32): 13258-13264(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.32.025
    [5] 封硕, 舒红, 谢步庆. 基于改进深度强化学习的三维环境路径规划[J]. 计算机应用与软件, 2021, 38(1): 250-255. doi: 10.3969/j.issn.1000-386x.2021.01.042

    FENG S, SHU H, XIE B Q. 3d environment path planning based on improved deep reinforcement learning[J]. Computer Applications and Software, 2021, 38(1): 250-255(in Chinese). doi: 10.3969/j.issn.1000-386x.2021.01.042
    [6] 张鑫. 基于规则DEM的地形识别及路径规划研究[D]. 桂林: 桂林电子科技大学, 2017: 6-8.

    ZHANG X. Research on terrain recognition and path planning based on regular DEM[D]. Guilin: Guilin University of Electronic Technology, 2017: 6-8(in Chinese).
    [7] 李东正. 复杂环境下多机器人路径规划方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2015: 49-55.

    LI D Z. Research on problems of multi-robots path planning under complicated environment[D]. Harbin: Harbin Engineering University, 2015: 49-55(in Chinese).
    [8] 张启钱, 许卫卫, 张洪海, 等. 复杂低空物流无人机路径规划[J]. 北京航空航天大学学报, 2020, 46(7): 1275-1286. doi: 10.13700/j.bh.1001-5965.2019.0455

    ZHANG Q Q, XU W W, ZHANG H H, et al. Path planning for logistics UAV in complex low-altitude airspace[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1275-1286(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0455
    [9] PRIMATESTA S, GUGLIERI G, RIZZO A. A risk-aware path planning strategy for UAVs in urban environments[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2): 629-643.
    [10] 贾广芝. 基于遗传算法和稀疏A*算法的无人机三维航迹规划研究[D]. 南京: 南京邮电大学, 2017: 21-46.

    JIA G Z. Research on three-dimensional path planning of UAV based on genetic algorithm and sparse A* algorithm[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2017: 21-46(in Chinese).
    [11] 唐龙伟. 真实DEM地图下一种航迹规划算法的研究和应用[D]. 成都: 电子科技大学, 2014: 16-17.

    TANG L W. Research and implementation of trajectory planning in real DEM maps based on milp[D]. Chengdu: University of Electronic Science and Technology of China, 2014: 16-17 (in Chinese).
    [12] 张顺, 谢习华, 陈定平. 基于改进RRT-Connect的无人机航迹规划算法[J]. 传感器与微系统, 2020, 39(12): 146-148. doi: 10.13873/J.1000-9787(2020)12-0146-03

    ZHANG S, XIE X H, CHEN D P. UAV path planning algorithm based on improved RRT-Connect[J]. Transducer and Microsystem Technologies, 2020, 39(12): 146-148(in Chinese). doi: 10.13873/J.1000-9787(2020)12-0146-03
    [13] YANG L, QI J T, XIAO J Z, et al. A literature review of UAV 3D path planning[C]// Proceeding of the 11th World Congress on Intelligent Control and Automation. Piscataway: IEEE Press, 2015: 2376-2381.
    [14] 谭建豪, 肖友伦, 刘力铭, 等. 改进PRM算法的无人机航迹规划[J]. 传感器与微系统, 2020, 39(1): 38-41. doi: 10.13873/J.1000-9787(2020)01-0038-04

    TAN J H, XIAO Y L, LIU L M, et al. Improved PRM algorithm for path planning of UAV[J]. Transducer and Microsystem Technologies, 2020, 39(1): 38-41(in Chinese). doi: 10.13873/J.1000-9787(2020)01-0038-04
    [15] RUAN S P, MA Q L, POBLETE K L, et al. Path planning for ellipsoidal robots and general obstacles via closed-form characterization of minkowski operations[C]//International Workshop on the Algorithmic Foundations of Robotics. Berlin: Springer, 2020: 3-18.
    [16] 陈都, 孟秀云. 基于改进ARA*算法的无人机在线航迹规划[J]. 飞行力学, 2021, 39(1): 60-65. doi: 10.13645/j.cnki.f.d.20201112.002

    CHEN D, MENG X Y. UAV online path planning based on improved ARA* algorithm[J]. Flight Dynamics, 2021, 39(1): 60-65(in Chinese). doi: 10.13645/j.cnki.f.d.20201112.002
    [17] 中国科学院计算机网络信息中心. 地理空间数据云 [DB/OL]. (2021-06-11) [2021-06-11]. http://www.gscloud.cn.

    Computer Network Information Center, Chineses Acadamy of Sciences. Geospatial data clond[DB/OL]. (2021-06-11) [2021-06-11]. http://www.gscloud.cn(in Chinese).
    [18] OpenStreetMap. Instant CAD files for any location on earth [DB/OL]. (2021-06-11) [2021-06-11].https://cadmapper.com.
    [19] Autodesk. AutoCAD 2011 support[EB/OL]. (2021-06-11)[2021-06-11]. http://docs.autodesk.com/ACD/2011/CHS/landing.html.
    [20] 张胜祥. 基于滚动时域MILP的小型无人机航迹规划[D]. 广州: 华南理工大学, 2009: 19-21.

    ZHANG S X. Path planning of small-scale unmanned helicopters using receding horizon MILP[D]. Guangzhou: South China University of Technology, 2009: 19-21(in Chinese).
    [21] 全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 023238.

    QUAN Q, LI G, BAI Y Q, et al. Low altitude UAV traffic management: an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023238(in Chinese).
    [22] SZCZERBA R J, GALKOWSKI P, GLICKTEIN I S, et al. Robust algorithm for real-time route planning[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(3): 869-878. doi: 10.1109/7.869506
    [23] 黄文刚, 张怡, 姜文毅, 等. 变步长稀疏A*算法的无人机航路规划[J]. 计算机工程与应用, 2012, 48(29): 206-209. doi: 10.3778/j.issn.1002-8331.2012.29.042

    HUANG W G, ZHANG Y, JIANG W Y, et al. SAS algorithm with changeable steps for route planning of UAVs[J]. Computer Engineering and Applications, 2012, 48(29): 206-209(in Chinese). doi: 10.3778/j.issn.1002-8331.2012.29.042
    [24] 王生印, 龙腾, 王祝, 等. 基于即时修复式稀疏A*算法的动态航迹规划[J]. 系统工程与电子技术, 2018, 40(12): 2714-2721. doi: 10.3969/j.issn.1001-506X.2018.12.14

    WANG S Y, LONG T, WANG Z, et al. Dynamic path planning using anytime repairing sparse A* algorithm[J]. Systems Engineering and Electronics, 2018, 40(12): 2714-2721(in Chinese). doi: 10.3969/j.issn.1001-506X.2018.12.14
    [25] GOSS K, MUSMECI R, SILVESTRI S. Realistic models for characterizing the performance of unmanned aerial vehicles[C]// 2017 26th International Conference on Computer Communication and Networks (ICCCN). Piscataway: IEEE Press, 2017: 1-9.
    [26] KAVRAKI L, LATOMBE J C. Randomized preprocessing of configuration for fast path planning[C]// Proceedings of the 1994 IEEE International Conference on Robotics and Automation. Piscataway: IEEE Press, 2002: 2138-2145.
    [27] Rahal Kala. Source codes[DB/OL]. (2021-06-11)[2021-06-11]. http://rkala.in/codes.php.
    [28] 何雨枫. 室内微小型无人机路径规划算法研究[D]. 南京: 南京航空航天大学, 2014: 40-45.

    HE Y F. Research on indoor MUAV path planning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 40-45(in Chinese).
  • 加载中
图(21) / 表(5)
计量
  • 文章访问数:  902
  • HTML全文浏览量:  77
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 录用日期:  2022-05-13
  • 网络出版日期:  2022-08-29
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答