留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离心雾化过程中转盘的耦合传热数值研究

彭磊 李龙 赵伟

彭磊,李龙,赵伟. 离心雾化过程中转盘的耦合传热数值研究[J]. 北京航空航天大学学报,2023,49(12):3456-3466 doi: 10.13700/j.bh.1001-5965.2022.0152
引用本文: 彭磊,李龙,赵伟. 离心雾化过程中转盘的耦合传热数值研究[J]. 北京航空航天大学学报,2023,49(12):3456-3466 doi: 10.13700/j.bh.1001-5965.2022.0152
PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0152
Citation: PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0152

离心雾化过程中转盘的耦合传热数值研究

doi: 10.13700/j.bh.1001-5965.2022.0152
基金项目: 中国科学院力学研究所高温气体动力学国家重点实验室青年基金(QN20210004)
详细信息
    通讯作者:

    E-mail:lilong@imech.ac.cn

  • 中图分类号: TF123

Numerical study on coupled heat transfer of rotating disc in centrifugal atomization

Funds: Youth Fund of State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences (QN20210004)
More Information
  • 摘要:

    转盘离心雾化是一种制备球形金属粉末的重要方法,在高熔点金属粉末制备中,需要对转盘结构本身和下端的驱动电机进行热防护。采用数值模拟的方法,研究熔融铝液的转盘离心雾化流场模型的耦合传热问题,给出不同材料、不同转盘结构条件下的转盘温度场分布。为提高冷却效率,发展带有肋片的新型转盘热防护结构,分析肋片结构的散热机理,对比不同肋片位置、肋片厚度和肋片直径的热防护效果。研究结果表明:大热容和低导热系数的金属材料转盘的底端温度更低;肋片和转盘之间形成的环形氮气流场是提高转轴散热能力的主要原因;肋片位置越低,直径越大,厚度越厚,转轴底端温度越低,冷却效果越好。

     

  • 图 1  转盘离心雾化流场传热过程示意图

    Figure 1.  Schematic diagram of heat transfer process in rotating disk atomization

    图 2  带有肋片结构的转盘

    Figure 2.  Rotary disk with fin

    图 3  数值模拟流程

    Figure 3.  Flow chart of numerical simulation

    图 4  计算模型

    Figure 4.  Calculation model

    图 5  网格划分

    Figure 5.  Mesh generation

    图 6  空气射流冷却几何模型

    Figure 6.  Geometric model of air jet cooling

    图 7  空气射流冷却网格划分

    Figure 7.  Mesh generation of air jet cooling

    图 8  x方向的局部Nu分布

    Figure 8.  Local Nu distribution in x direction

    图 9  不同网格数量转轴中心线温度分布

    Figure 9.  Temperature distribution of rotating axis centerline with different grids number

    图 10  不同金属材料转盘温度分布

    Figure 10.  Temperature distribution of disk made of different metal materials

    图 11  不同金属材料转盘截面温度分布

    Figure 11.  Temperature distribution of turntable sections of different metal materials

    图 12  有肋片的转盘计算模型及网格截面

    Figure 12.  Calculation model and mesh section of rotary disk with fin

    图 13  转盘上表面温度随径向分布

    Figure 13.  Radial distribution of temperature on upper surface of rotary disk

    图 14  不同肋片位置高度下转轴温度分布

    Figure 14.  Temperature distribution of rotating shaft with different fin height positions

    图 15  有无肋片条件下流场对比

    Figure 15.  Flow field comparison with or without fin

    图 16  不同肋片直径下转轴温度分布

    Figure 16.  Temperature distribution of rotating shaft with different fin diameters

    图 17  不同肋片直径下流场对比

    Figure 17.  Flow field comparison under different fin diameters

    图 18  不同肋片厚度下转轴温度分布

    Figure 18.  Temperature distribution of rotating shaft with different fin thickness

    图 19  不同肋片厚度大小下流场对比

    Figure 19.  Flow field comparison under different fin thickness

    表  1  熔态铝热物性参数[16]

    Table  1.   Thermophysical parameters of molten aluminum[16]

    密度/(kg·m−3)比热容/(J·(kg·K)−1)导热系数/(W·(m·K)−1)黏性系数/(Pa·s)标准状态焓值/(kJ·mol−1)表面张力/(N·m−1)
    (933$\leqslant $T$\leqslant $1190)(933$\leqslant $T$\leqslant $2327)(933$\leqslant $T$\leqslant $2700)(933$\leqslant $T$\leqslant $1270)8.66 (933$\leqslant $T$\leqslant $1270)
    2667.5−0.311T1176.848.226+0.057T−1.21×10−5T21.852×10−4exp(1850.1/T)1.18−2.4×10−4T
    下载: 导出CSV

    表  2  304不锈钢热物性参数[17]

    Table  2.   Thermophysical parameters of 304 steel[17]

    温度/℃比热容/(J·(kg·K)−1)导热系数/(W·(m·K)−1)
    2548014.8
    100500 15.8
    200 530 17.7
    300 54018.8
    400560 20.7
    500 57021.4
    600 595 23.5
    700 600 24.5
    80062025.8
    900 63027.5
    下载: 导出CSV

    表  3  镍热物理参数[17]

    Table  3.   Thermophysical parameters of nickel[17]

    温度/℃导热系数/(W·(m·K)−1)比热容/(J·(kg·K)−1)
    25 426 90
    100 480 87
    200 547 76
    300 700 64
    400 536 60
    500 535 62
    600 540 65
    700 557 67
    800 574 71
    900 590 72.7
    下载: 导出CSV

    表  4  高铬铸铁热物理参数[18]

    Table  4.   Thermophysical parameters of high chromium cast iron[18]

    温度/℃ 比热容/(J·(kg·K)−1) 导热系数/(W·(m·K)−1)
    20 465 54
    100 478 50.34
    200 519 46.68
    300 528 43.02
    400 541 39.36
    500 558 35.73
    600 583 32.04
    700 621 29.86
    下载: 导出CSV

    表  5  因素水平确定表

    Table  5.   Factors to determine level

    水平肋片位置高度/mm肋片厚度/mm肋片直径/mm
    19120
    2141.530
    319240
    下载: 导出CSV

    表  6  9种肋片参数搭配下的转轴底端温度

    Table  6.   Temperature at the bottom of the shaft under 9 different fin parameter combinations

    序号肋片位置高度/
    mm
    肋片厚度/
    mm
    肋片直径/
    mm
    转轴底端温度/
    1 9120444.77
    2 91.530373.74
    3 9240315.63
    414130445.02
    5141.540387.81
    614220499.44
    719140510.28
    8191.520560.74
    919230516.49
    下载: 导出CSV

    表  7  以转轴底端温度为指标的极差分析

    Table  7.   Range analysis based on temperature at the bottom of rotating shaft


    KmnkmnRn
    水平1水平2水平3水平1水平2水平3
    11134.141332.271587.51378.05444.09529.17151.12
    21400.071331.561322.29466.69440.76443.8525.93
    31504.951213.721335.25501.65445.08404.5797.08
    下载: 导出CSV
  • [1] SIMONS M. Additive manufacturing—A revolution in progress? Insights from a multiple case study[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 735-749.
    [2] 杨兵, 刘颖. BGA封装技术[J]. 电子与封装, 2003, 3(4): 6-13.

    YANG B, LIU Y. BGA packaging technology[J]. Electronics & Packaging, 2003, 3(4): 6-13(in Chinese).
    [3] KIM C K, KIM K H, PARK J M, et al. Development of advanced research reactor fuels using centrifugal atomization technology[J]. Metals and Materials, 1999, 5(2): 149-156. doi: 10.1007/BF03026045
    [4] SOVA A, DOUBENSKAIA M, TROFIMOV E, et al. Cold spray of metal powder mixtures: Achievements, issues and perspectives[J]. Transactions of the Indian Institute of Metals, 2021, 74(3): 559-570. doi: 10.1007/s12666-020-02165-7
    [5] 高莹, 顾毅, 吴艺辉, 等. 铁锰无磁合金粉的水雾化法生产工艺研究[J]. 粉末冶金技术, 2018, 36(6): 465-469.

    GAO Y, GU Y, WU Y H, et al. Research on production technology of nonmagnetic Fe-Mn alloy powders by water atomization[J]. Powder Metallurgy Technology, 2018, 36(6): 465-469(in Chinese).
    [6] 刘英杰, 胡强, 赵新明, 等. 增材制造用高流动性铝合金粉末制备技术研究[J]. 稀有金属材料与工程, 2021, 50(5): 1767-1774.

    LIU Y J, HU Q, ZHAO X M, et al. Investigation of centrifugal atomization technology of high fluidity aluminium alloy powder for additive manufacturing[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1767-1774(in Chinese).
    [7] TANG J J, NIE Y, LEI Q, et al. Characteristics and atomization behavior of Ti-6Al-4V powder produced by plasma rotating electrode process[J]. Advanced Powder Technology, 2019, 30(10): 2330-2337. doi: 10.1016/j.apt.2019.07.015
    [8] 王建军. 中国雾化制粉技术现状简介[J]. 粉末冶金工业, 2016, 26(5): 1-4.

    WANG J J. Brief introduction to the present situation of atomization powder technology in China[J]. Powder Metallurgy Industry, 2016, 26(5): 1-4(in Chinese).
    [9] 杨洪涛, 卢志辉, 孙志杨, 等. 等离子旋转电极雾化制粉设备国内研究现状[J]. 粉末冶金工业, 2021, 31(4): 88-93.

    YANG H T, LU Z H, SUN Z Y, et al. Domestic research status of plasma rotation electrode process equipment[J]. Powder Metallurgy Industry, 2021, 31(4): 88-93(in Chinese).
    [10] LABRECQUE C, ANGERS R, TREMBLAY R, et al. Inverted disk centrifugal atomization of AZ91 magnesium alloy[J]. Canadian Metallurgical Quarterly, 1997, 36(3): 169-175. doi: 10.1179/cmq.1997.36.3.169
    [11] ÖZTÜRK S, ARSLAN F. Production of rapidly solidified metal powders by water cooled rotating disc atomisation[J]. Powder Metallurgy, 2013, 44(2): 171-176.
    [12] ÖZTÜRK S, ARSLAN F, ÖZTÜRK B. Effect of process parameters on production of metal powders by water jet cooled rotating disc atomisation[J]. Powder Metallurgy, 2013, 48(2): 163-170.
    [13] ÖZTÜRK S, ARSLAN F, ÖZTÜRK B. Effect of production parameters on cooling rates of AA2014 alloy powders produced by water jet cooled, rotating disc atomisation[J]. Powder Metallurgy, 2013, 46(4): 342-348.
    [14] ÖZTÜRK S, USTA G, ÖZTÜRK B. Production of bronze powders by water jet cooled rotating disc atomisation[J]. Powder Metallurgy, 2013, 54(3): 393-399.
    [15] SAN J Y, SHIAO W Z. Effects of jet plate size and plate spacing on the stagnation Nusselt number for a confined circular air jet impinging on a flat surface[J]. International Journal of Heat and Mass Transfer, 2006, 49(19-20): 3477-3486. doi: 10.1016/j.ijheatmasstransfer.2006.02.055
    [16] 夏盛勇, 胡春波. 液态铝和三氧化二铝物性参数计算方法综述[J]. 推进技术, 2019, 40(5): 961-969.

    XIA S Y, HU C B. Review of physical property calculations of liquid aluminum and alumina[J]. Journal of Propulsion Technology, 2019, 40(5): 961-969(in Chinese).
    [17] MILLS K C. Recommended values of thermophysical properties for selected commercial alloys[M]. Cambridge: Woodhead, 2002.
    [18] 范瑞杰. 基于ANSYS的热轧辊蠕变疲劳寿命的预测[D]. 秦皇岛: 燕山大学, 2014: 29-30.

    FAN R J. The hot roll creep fatigue life prediction based on the ansys platform[D]. Qinhuangdao: Yanshan University, 2014: 29-30(in Chinese).
    [19] 魏泽辉, 高世杰, 闫素英, 等. 基于极差分析与费用年值法的太阳能-空气源热泵互补供热系统的正交优化[J]. 可再生能源, 2019, 37(8): 1146-1151.

    WEI Z H, GAO S J, YAN S Y, et al. Orthogonal experimental of the solar heating system assisted with air source heat pump based on annual cost and solar fraction[J]. Renewable Energy Resources, 2019, 37(8): 1146-1151(in Chinese).
  • 加载中
图(19) / 表(7)
计量
  • 文章访问数:  62
  • HTML全文浏览量:  22
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 录用日期:  2022-05-26
  • 网络出版日期:  2022-06-23
  • 整期出版日期:  2023-12-29

目录

    /

    返回文章
    返回
    常见问答